【Java】295. 数据流的中位数---定义两个堆,一个为最小堆,一个为最大堆,堆顶为中位数!!!

本文探讨了一种数据结构的设计,用于在数据流中实时计算中位数。介绍了两种不同的实现方式,一种基于排序列表,另一种利用优先队列(最小堆和最大堆)。文章还提出了在0到100范围内的数据优化策略,以及针对99%数据在该范围内的进一步优化。此外,代码示例展示了如何在Java中实现这两个解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

中位数是有序列表中间的数。如果列表长度是偶数,中位数则是中间两个数的平均值。

例如,

[2,3,4] 的中位数是 3

[2,3] 的中位数是 (2 + 3) / 2 = 2.5

设计一个支持以下两种操作的数据结构:

void addNum(int num) - 从数据流中添加一个整数到数据结构中。
double findMedian() - 返回目前所有元素的中位数。
示例:

addNum(1)
addNum(2)
findMedian() -> 1.5
addNum(3)
findMedian() -> 2
进阶:

如果数据流中所有整数都在 0 到 100 范围内,你将如何优化你的算法?
如果数据流中 99% 的整数都在 0 到 100 范围内,你将如何优化你的算法?

代码:暴力
class MedianFinder {
    List<Integer> list=new ArrayList<>();
    /** initialize your data structure here. */
    public MedianFinder() {

    }
    
    public void addNum(int num) {
        list.add(num);
        Collections.sort(list);
    }
    
    public double findMedian() {
    	int a=list.size();
    	if(a%2==0) {
    		return  (list.get(a/2)+list.get(a/2-1))/2.0;
    	}
		return list.get(a/2);

    }
}

在这里插入图片描述

代码:
PriorityQueue<Integer> min;
    PriorityQueue<Integer> max;
    /** initialize your data structure here. */
    public MedianFinder() {
        min=new PriorityQueue<>();
        max=new PriorityQueue<>(new Comparator<Integer>() {
			@Override
			public int compare(Integer o1, Integer o2) {
				return o2-o1;
			}
		});
    }
    
    public void addNum(int num) {
        max.add(num);
    	min.add(max.remove());
    	if(min.size()>max.size()) {
    		max.add(min.remove());
    	}
    }
    
    public double findMedian() {
    	if(min.size()==max.size()) {
    		return (min.peek()+max.peek())/2.0;
    	}
		return max.peek();
    }

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

惠菁

跪求一键三联

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值