并查集实现克鲁斯卡尔算法 HDU —— 1233

本文详细介绍了Kruskal算法在求解最小生成树问题中的应用。通过边的权重排序及并查集操作确保生成树不形成环路。并提供了一个完整的C++实现代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

马上要考数据结构了,临时复习一下最小生成树算法,两种经典算法,一种Prim,一种kruskal,这里讲一下kruskal算法,所谓kruskal算法,就是先把一个带权无向图按照每个边的权值大小进行排序,然后从小到大依次往一棵空树中添加边,被添加进的边需要满足这样的条件:这条边可以把两个原本不连通的连同分量连接成一个连通分量。

从节点的角度来看,就是这条待添加的边的两个关联节点是否处于同一个集合中,因此我们就可以使用并查集来实现Kruskal算法,下面的代码中有详细注释

附上一个并查集的详细讲解博客,写得很不错
http://blog.csdn.net/dellaserss/article/details/7724401#reply

#include<stdio.h>
#include<string.h> 
#include<algorithm>
#include<iostream>

using namespace std;
//顶点数是N,那么这所有的顶点之间可以形成的边的数目是N*(N-1)/2
//在本题中,MAX的值得就是99*98/2 = 4851
#define MAX 5000 

int f[MAX];

typedef struct {
    //其实对于无向图来说,无所谓弧头弧尾
    int tail;
    int head;
    int weight;
} Arc;

//按照权值进行排序
bool cmp(Arc a, Arc b) {
    return a.weight < b.weight;
}

//初始化并查集
//这里写MAX是很保守的写法,因为只需要初始化所有的节点就行了,节点数N是远小于MAX的
//初始化每个节点,初始化完成之后,每一个节点的上级就是他自己
void init() { 
    for(int i = 0; i <= MAX; i++) f[i] = i;
}
int find(int x) {
    //这个函数就是递归查找自己的上级
    //递归查找,直到找到了自己的上级,并返回
    if(f[x]!=x)
        f[x] = find(f[x]); 
    return f[x];
}
int join(int R1,int R2) {
    int r1 = find(R1);
    int r2 = find(R2);
    //然后就比较这两个节点的上级是否为同一个节点
    //如果是同一个节点,那么就说明这里两个节点是位于同一个集合中的节点
    //也就是说,他们是位于同一个连通分量中的,对于这样的节点,就不能再往生成树中添加了
    //如果添加进去,会在生成树中形成回路
    if(r1 != r2) {
        f[r2] = r1;
        return 1;
    }
    return 0;
}

int main() {
    Arc arc[MAX];
    int n = 0;
    while(scanf("%d",&n)!=EOF) {
        if(n==0)
            break;
        memset(arc, 0, sizeof(arc));
        init();
        int m = n*(n-1)/2;
        for(int i = 0; i < m; i++) 
            scanf("%d%d%d",&arc[i].tail, &arc[i].head, &arc[i].weight);

        sort(arc, arc+m, cmp);
        int sum_weight = 0; 
        for(int i = 0 ;i < m; i++) {
            if(!n) break;
            if(join(arc[i].tail, arc[i].head)) {
                n--;
                sum_weight+=arc[i].weight;
            }
        }
        printf("%d\n",sum_weight);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值