马上要考数据结构了,临时复习一下最小生成树算法,两种经典算法,一种Prim,一种kruskal,这里讲一下kruskal算法,所谓kruskal算法,就是先把一个带权无向图按照每个边的权值大小进行排序,然后从小到大依次往一棵空树中添加边,被添加进的边需要满足这样的条件:这条边可以把两个原本不连通的连同分量连接成一个连通分量。
从节点的角度来看,就是这条待添加的边的两个关联节点是否处于同一个集合中,因此我们就可以使用并查集来实现Kruskal算法,下面的代码中有详细注释
附上一个并查集的详细讲解博客,写得很不错
http://blog.csdn.net/dellaserss/article/details/7724401#reply
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
using namespace std;
//顶点数是N,那么这所有的顶点之间可以形成的边的数目是N*(N-1)/2
//在本题中,MAX的值得就是99*98/2 = 4851
#define MAX 5000
int f[MAX];
typedef struct {
//其实对于无向图来说,无所谓弧头弧尾
int tail;
int head;
int weight;
} Arc;
//按照权值进行排序
bool cmp(Arc a, Arc b) {
return a.weight < b.weight;
}
//初始化并查集
//这里写MAX是很保守的写法,因为只需要初始化所有的节点就行了,节点数N是远小于MAX的
//初始化每个节点,初始化完成之后,每一个节点的上级就是他自己
void init() {
for(int i = 0; i <= MAX; i++) f[i] = i;
}
int find(int x) {
//这个函数就是递归查找自己的上级
//递归查找,直到找到了自己的上级,并返回
if(f[x]!=x)
f[x] = find(f[x]);
return f[x];
}
int join(int R1,int R2) {
int r1 = find(R1);
int r2 = find(R2);
//然后就比较这两个节点的上级是否为同一个节点
//如果是同一个节点,那么就说明这里两个节点是位于同一个集合中的节点
//也就是说,他们是位于同一个连通分量中的,对于这样的节点,就不能再往生成树中添加了
//如果添加进去,会在生成树中形成回路
if(r1 != r2) {
f[r2] = r1;
return 1;
}
return 0;
}
int main() {
Arc arc[MAX];
int n = 0;
while(scanf("%d",&n)!=EOF) {
if(n==0)
break;
memset(arc, 0, sizeof(arc));
init();
int m = n*(n-1)/2;
for(int i = 0; i < m; i++)
scanf("%d%d%d",&arc[i].tail, &arc[i].head, &arc[i].weight);
sort(arc, arc+m, cmp);
int sum_weight = 0;
for(int i = 0 ;i < m; i++) {
if(!n) break;
if(join(arc[i].tail, arc[i].head)) {
n--;
sum_weight+=arc[i].weight;
}
}
printf("%d\n",sum_weight);
}
return 0;
}