算法-动态规划

文章以LeetCode上买卖股票含手续费的题目为例,介绍动态规划算法。阐述适合用动态规划的问题特征,即答案依赖问题规模且可由小规模递推。还说明了使用动态规划的步骤,如建立状态转移方程、缓存复用结果、按顺序计算,最后给出该题状态转移方程建立思路。

在LeetCode上有一道题:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-with-transaction-fee/
这个题的解决思路之一就是使用动态规划。

那何为动态规划,知乎上这篇文章讲的比较透彻:https://www.zhihu.com/question/39948290/answer/883302989

我总结了一下,什么样的问题适合用动态规划?

  • 问题的答案依赖于问题的规模​,也就是问题的所有答案构成了一个数列。
  • 大规模问题的答案可以由小规模问题的答案递推得到,也就是​ f(n)的值可以由​ f(i)中的个别求得。

如何使用动态规划?

  • 建立状态转移方程
    这一步是最难的,大部分人都被卡在这里。这一步没太多的规律可说,只需抓住一个思维:当做已经知道​ f(1)~​ ​ f(n-1)的值,然后想办法利用它们求得​ f(n)​。
  • 缓存并复用以往结果
    这一步不难,但是很重要。如果没有合适地处理,很有可能就是指数和线性时间复杂度的区别。
  • 按顺序从小往大算

回到LeetCode那道算法题,买卖股票的最佳时机含手续费,最难的就是建立状态转移方程,要找到f(n)​与 f(n-1)的关系,从买卖动作上来看,变量太多了。换一个角度,从第n次操作结果来看,就只有两个状态,手上有股票和手上没有股票,这就能够建立状态转移方程:

dp[i][0]=max{dp[i−1][0],dp[i−1][1]+prices[i]−fee}  //手上没有股票
dp[i][1]=max{dp[i−1][1],dp[i−1][0]−prices[i]}    //手上有股票

剩下工作,就是遍历,然后用一个二维数组存储结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值