函数对向量的求导

我们一般对函数求导,是对单变量求导,但是在机器学习中,会遇到多元函数对向量求导的情况,比如:
f(w⃗)=12∣∣w⃗∣∣2 f(\vec{w})=\frac{1}{2}||\vec{w}||^2f(w )=21w 2其中,w⃗=(w1,w2,⋯ ,wn)\vec{w}=(w_1,w_2,\cdots,w_n)w =(w1,w2,,wn)

我们会看到在数学公式推导中会遇到函数对向量的求导:

∂f(w⃗)∂w⃗=12(w12+w22+⋯+wn2)∂w⃗\frac{\partial f(\vec{w})}{\partial \vec{w}} = \frac{\frac{1}{2}(w^2_1+w^2_2+\cdots+w^2_n)}{\partial \vec{w}}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值