我们一般对函数求导,是对单变量求导,但是在机器学习中,会遇到多元函数对向量求导的情况,比如:
f(w⃗)=12∣∣w⃗∣∣2 f(\vec{w})=\frac{1}{2}||\vec{w}||^2f(w)=21∣∣w∣∣2其中,w⃗=(w1,w2,⋯ ,wn)\vec{w}=(w_1,w_2,\cdots,w_n)w=(w1,w2,⋯,wn)
我们会看到在数学公式推导中会遇到函数对向量的求导:
∂f(w⃗)∂w⃗=12(w12+w22+⋯+wn2)∂w⃗\frac{\partial f(\vec{w})}{\partial \vec{w}} = \frac{\frac{1}{2}(w^2_1+w^2_2+\cdots+w^2_n)}{\partial \vec{w}}