【C/C++】为什么INT_MAX(整形最大值)减去INT_MIN(整形最小值)等于-1

本文通过一个C++代码示例,详细解释了在计算机中进行大整数运算时,如何因溢出而导致结果异常,特别是在计算INT_MAX与INT_MIN的差值时。文章深入探讨了整形数的表示方式,包括正数和负数的二进制表示,并介绍了补码计算原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include <iostream>
#include <limits.h>
using namespace std;
int main()
{
	cout<<INT_MAX-INT_MIN<<endl;//输出-1
	return 0;
}

  • 首先INT_MAX是int所能够正确存储的最大整形,是一个很大的正整数
  • INT_MIN是int所能够正确存储的最小整形,是一个很小的负整数。
  • 所以很大的正整数减去很小的负整数,将会是一个比INT_MAX还要大的正整数,而int所能正常存储的最大整数是INT_MAX,所以相减后的结果肯定不能正常存储,也就是说会发生溢出,最终导致结果为-1。
  • 强烈建议首先看下我的这篇文章,便于理解下面的内容。
    int是4字节32位,它能够保存的最大正整数二进制形式如下:
    011111........1(31个1)
    它所能够保存的最小负整数如下:
    10000..........0(31个0)
    两者相减以后,最左边0-1发生溢出,结果为1,所以最终相减的结果变为:
    111..............(32个1)。
    而按照补码的方式计算,改结果等于1。
  • 总结:计算机中整形数的表示可以这样记忆,从0开始00000.......1表示1,000000.......10表示2,依次递增,直到01111111......1111表示最大的正数。最大蒸熟在加一就成了1000000......0000表示最小负数,10000000........01表示第二小负数,依次递增。
  • 如果放在数轴上就形成了一个环:
    在这里插入图片描述
改为c++14 #include <iostream> #include <vector> #include <unordered_map> #include <algorithm> // 用于max_element/min_element #include <climits> // 用于INT_MIN/INT_MAX using namespace std; struct PositionData { int count = 0; int first = INT_MAX; int last = INT_MIN; vector<int> positions; }; int main() { // 读取输入 int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; ++i) { cin >> a[i]; } // 创建数据结构 unordered_map<int, PositionData> data; // 遍历数组填充数据 for (int idx = 0; idx < n; ++idx) { int num = a[idx]; auto& d = data[num]; // 自动创建新条目 d.count++; d.first = min(d.first, idx); d.last = max(d.last, idx); d.positions.push_back(idx); } // 计算sum_max和x_list int sum_max = 0; vector<int> x_list; for (const auto& [num, info] : data) { sum_max += min(info.count, 3); if (info.count >= 3) { x_list.push_back(num); } } // 处理无x的情况 if (x_list.empty()) { cout << sum_max << endl; return 0; } // 计算L和R int L = INT_MIN; int R = INT_MAX; for (int x : x_list) { L = max(L, data[x].first); R = min(R, data[x].last); } // 处理无重叠情况 if (L >= R) { sum_max -= x_list.size(); cout << sum_max << endl; return 0; } // 二分查找处理 int t = 0; for (int x : x_list) { const auto& pos = data[x].positions; int left = 0, right = pos.size() - 1; bool found = false; while (left <= right) { int mid = (left + right) / 2; if (pos[mid] > L && pos[mid] < R) { found = true; break; } else if (pos[mid] <= L) { left = mid + 1; } else { right = mid - 1; } } if (!found) { t++; } } // 最终结果 sum_max -= t; cout << sum_max << endl; return 0; }
03-16
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值