【AI基础:机器学习】8、线性回归指南:从最小二乘到正则化,原理、代码与实战图解

在这里插入图片描述

“简约而不简单”——线性回归以最朴素的形式(y = wx + b)揭示了机器学习的核心思想:从数据中学习变量间的关系,并泛化到未知场景。它是监督学习的基石,是理解神经网络、随机森林等复杂模型的起点,更是金融预测、医疗分析等领域的“利器”。

本文将系统拆解线性回归的数学原理、优化方法、扩展技术与实战技巧,用图解和代码让每个概念直观易懂。

一、线性回归的本质:从“身高遗传”到“预测模型”

1.1 定义:寻找变量间的线性关系

线性回归的核心是用输入特征的线性组合预测连续目标值。例如:

  • 用房屋面积(x)预测房价(y):y = w×面积 + b(单变量)。
  • 用面积、年限、地段(x₁, x₂, x₃)预测房价:y = w₁x₁ + w₂x₂ + w₃x₃ + b(多变量)。

其向量化表示为:y = WᵀX + b,其中 W 是权重向量([w₁, w₂, ..., wₙ]),X 是特征向量([x₁, x₂, ..., xₙ]),b 是偏置(截距)。

1.2 历史起源:高尔顿的“回归效应”

19世纪,统计学家高尔顿研究亲子身高关系时发现:高个子父母的子女身高会向群体均值“回归”(不会无限增高)。他通过数据拟合出首个线性模型:子女身高 = 0.516×父母身高 + 33.73,首次揭示了“线性关系”在数据中的普适性。这一发现不仅命名了“回归”,更奠定了统计学习的基础。

1.3 “简约而不简单”的核心体现

  • 简约:模型形式直观(直线/超平面),数学原理清晰(最小化误差)。
  • 不简单
    • 包含机器学习全流程(数据→模型→损失→优化→评估)。
    • 是逻辑回归、神经网络(线性层)的基础组件。
    • 可解释性极强(权重直接反映特征重要性,如“面积每增加1㎡,房价平均涨8000元”)。

图示1:单变量线性回归的几何意义

纵轴:目标值y(如房价)
横轴:特征x(如面积)
  ● :真实样本点
  ─ :拟合直线y=wx+b
  | :样本点到直线的垂直距离(误差)
 目标:找到使所有误差之和最小的直线

二、如何衡量“好模型”?——损失函数与最小二乘法

2.1 损失函数:量化预测误差

要判断模型好坏,需先定义“误差”。线性回归最常用均方误差(MSE),计算预测值与真实值的平均平方差:

MSE=1m∑i=1m(yi−y^i)2\text{MSE} = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2MSE=m1i=1m(yiy^i)2

其中,m 是样本数,y_i 是真实值,\hat{y}_i = W^T X_i + b 是预测值。

  • 平方的作用:放大较大误差(对离群点敏感),保证误差非负,便于数学优化(可导)。
  • 目标:找到一组 Wb,使 MSE 最小——这就是最小二乘法的核心。

2.2 最小二乘法的数学求解

最小二乘法通过求导找极值求解最优参数(Wb)。

(1)单变量线性回归的解析解

对于 y = w₁x + w₀w₀ 即偏置 b),最优参数为:

w1=∑(yi−yˉ)(xi−xˉ)∑(xi−xˉ)2,w0=yˉ−w1xˉw₁ = \frac{\sum (y_i - \bar{y})(x_i - \bar{x})}{\sum (x_i - \bar{x})^2}, \quad w₀ = \bar{y} - w₁\bar{x}w1=(xixˉ)2(yiyˉ)(xi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无心水

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值