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This semester we have covered many concepts, algorithms, and theoretical
results in machine learning. Here we review and discuss some of the key
ideas.

1 Introduction
Machine learning is a discipline focused on two inter-related questions: “How can
one construct computer systems that automatically improve through experience?”
and “What are the fundamental theoretical laws that govern every learning system,
regardless of whether it is implemented in computers, humans or organizations?”
The study of machine learning is important both for addressing these fundamental
scientific and engineering questions, and for the highly practical computer soft-
ware it has produced and fielded across many applications.
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Machine learning covers a diverse set of learning tasks, from learning to clas-
sify emails as spam, to learning to recognize faces in images, to learning to control
robots to achieve targeted goals. Each machine learning problem can be precisely
defined as the problem of improving some measure of performance P when ex-
ecuting some task T, through some type of training experience E. For example,
in learning an email spam filter the task T is to learn a function that maps from
any given input email to an output label of spam or not-spam. The performance
metric P to be improved might be defined as the accuracy of this spam classifier,
and the training experience E might consist of a collection of emails, each labeled
as spam or not. Alternatively, one might define a different performance metric P
that assigns a higher penalty when non-spam is labeled spam, than when spam
is labeled non-spam. One might also define a different type of training experi-
ence, for example by including unlabeled emails along with those labeled as spam
and not-spam. Once the three components 〈T,P,E〉 have been specified fully, the
learning problem is well defined.

2 Key Concepts
This semester we examined many specific machine learning problems, applica-
tions, algorithms, and theoretical results. Below are some of the key overarching
concepts that emerge from this examination.

2.1 Key Perspectives on Machine Learning
It is useful to consider machine learning problems from several perspectives:

• Machine learning as optimization. Machine learning tasks are often formu-
lated as optimization problems. For example, in training a neural network
containing millions of parameters, we typically frame the learning task as
one of discovering the parameter values that optimize a particular objective
function such as minimizing the sum of squared errors in the network out-
puts compared to the desired outputs given by training examples. Similarly,
when training a Support Vector Machine classifier, we frame the problem as
a constrained optimization problem to minimize an objective function called
the hinge loss. When machine learning tasks are framed as optimization
problems, the learning algorithm is often itself an optimization algorithm.
Sometimes we use general purpose optimization methods such as gradient
descent (e.g., to train neural networks) or quadratic programming (e.g., to
train Support Vector Machines). In other cases, we can derive and use more
efficient methods for the specific learning task at hand (e.g., methods to cal-
culate the maximum likelihood estimates of parameters for a Naive Bayes
classifier).
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• Machine learning as probabilistic inference. A second perspective is that
machine learning tasks are often tasks involving probabilistic inference of
the learned model from the training data and prior probabilities. In fact, the
two primary principles for deriving learning algorithms are the probabilistic
principles of Maximum Likelihood Estimation (in which the learner seeks
the hypothesis that makes the observed training data most probable), and
Maximum a Posteriori Probability (MAP) estimation (in which the learner
seeks the most probable hypothesis, given the training data plus a prior prob-
ability distribution over possible hypotheses). In some cases, the learned
hypothesis (i.e., model) may itself contain explicit probabilities (e.g., the
learned parameters in a Naive Bayes classifier correspond to estimates of
specific probabilities). In other cases, even though the model parameters do
not correspond to specific probabilities (e.g., a trained neural network), we
may still find it useful to view the training algorithm as performing proba-
bilistic inference to find the Maximum Likelihood or the Maximum a Pos-
teriori probability network parameters’ values. Note this perspective that
machine learning algorithms are performing probabilistic inference is very
compatible with the above perspective that machine learning algorithms are
solving an optimization problem. In most cases, deriving a learning algo-
rithm based on the MLE or MAP principle involves first defining an objec-
tive function in terms of the parameters of the hypotheses and the training
data, then applying an optimization algorithm to solve for the hypothesis
parameter values that maximize or minimize this objective.

• Machine learning as parametric programming. Another perspective we can
take on the same learning programs is that they are choosing parameter val-
ues that define a function or a computer program written in a programming
language which is defined by their hypothesis space. For example, we can
view deep neural networks as implementing parameterized programs, where
the learned network parameters instantiate a specific program out of a set of
potential programs predefined by the given network structure. As we move
from simple feedforward networks, to networks with recurrent (feedback)
structure, and with trainable memory units, the set of representable (and
potentially learnable) programs grows in complexity.

• Machine learning as evolutionary search. Note that some forms of learning
do not admit an easy formulation as an optimization or probabilistic infer-
ence problem. For example, we might view natural evolution as a learning
process – from generation to generation it produces increasingly success-
ful organisms. However, in natural evolution it is not clear that there exists
an explicit objective being optimized over time, or a corresonding proba-
bilistic inference problem. Instead, the notion of ”increasingly successful
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organism” may itself change over time, as the environment of the organism
and its set of competitors evolve as well.

2.2 Key Results
Although the field of machine learning is very much still under development, there
are a number of key results that help us understand how to build practical machine
learning systems:

• There is no free lunch. When we consider it carefully, it is clear that no sys-
tem - computer program or human - has any basis to reliably classify new
examples that go beyond those it has already seen during training, unless
that system has some additional prior knowledge or assumptions that go be-
yond the training examples. In short, there is no free lunch – no way to gen-
eralize beyond the specific training examples, unless the learner commits to
some additional assumptions. To see this, consider the set of hypotheses H
explored by a decision tree learning system. Here H is the set of all possi-
ble decision trees that might be output by the learning program as it tries to
learn some boolean classifier function f : X → {0,1} from labeled training
examples. For simplicity, assume that each instance x in X is itself a tuple
of n boolean valued features; that is, x = 〈x1, . . .xn〉, where each xi has the
value 0 or 1. Now consider the question of how many training examples
the decision tree learner must observe before it can identify the correct de-
cision tree h(x) among the set of all possible decision trees H. To answer
this question, first notice that no matter what deterministic target function
f ∗ : X→{0,1} the teacher wishes to teach, the learner will be able to find a
decision tree of depth n that perfectly represents that function.1 Put another
way, the set H of all decision trees is sufficiently expressive to represent any
function that can be defined over the instances X . Unfortunately, a conse-
quence of this expressive power is that the learner will be uncertain which
decision tree to choose, until it has seen every instance x from X as a labeled
training example. This can be seen easily if we consider the case where the
teacher has already provided labeled training examples corresponding to ev-
ery instance x from X except for one final instance x f which it has not yet
labeled. At this point, the learner will find there are still two decision tree
hypotheses that it cannot choose between. Both of these hypotheses will
correctly label all of the labeled training examples seen thus far, but they
will assign different labels to x f . Only after the trainer provides labels for
every single example in X will the learner be able to resolve which of the

1This is true because a decision tree of depth n will in this case sort each instance x from X into
a unique leaf node, where either label for Y can then be assigned.

4



possible decision trees in H is the one corresponding to the target function
being taught by the trainer. Although we use decision trees as an example
here, the argument holds for any learning algorithm.

• Three sources of error in learned functions. Bias, variance and unavoid-
able error are three qualitatively distinct sources of error when attempting
to learn some target function f : X → Y , or equivalently P(Y |X). First, bias
refers to errors caused when the learner fails to consider equally each possi-
ble function that can be defined over the instances X . This can occur when
the learner’s hypothesis space H is insufficient to represent every function
that can be labeled over X , or alternatively even if H is sufficiently expres-
sive but the learner has some preference (bias) for choosing between two
hypotheses that perform equally over the training data (e.g., a preference
for short decision trees). Of course the bias might be correct or incorrect,
but it is one possible source of error. Second, variance in the set of observed
training data can be a source of error. If we consider obtaining training data
by drawing a set of m examples from an underlying distribution P(X), then
statistical variations in this set of randomly drawn examples can lead to un-
representative sets of training examples, which can contribute to error. Of
course if we increase the number m of training examples, then we can re-
duce the expected impact of this kind of variance in the draw of training
data. Finally, a third possible source of error is the unavoidable error that
occurs when we attempt to learn a non-deterministic function. For exam-
ple, if for a particular instance x, y = 1 with probability 0.6 and y = 0 with
probability 0.4, then even if the classifier predicts the more probable y = 1
label for x, it will make an unavoidable error in 40% of these cases.

• Overfitting. We say that a particular hypothesis, h, overfits the training data
if its error rate over the training data errortrain(h) provides an underesti-
mate of its true error errortrue(h). Furthermore, we define the degree of
overfitting to be (errortrue(h)− errortrain(h)). Overfitting is a key practi-
cal issue, because it typically is a sign that the learned hypothesis h will
perform poorly when we try to use it in the future. Overfitting is most prob-
lematic when the number of training examples is small, or the complexity
of the hypothesis space considered by the learner is large – both lead to a
situation in which multiple hypotheses will perform equally well over the
training data, and the learner will be unable to determine which hypothesis
will perform best over future test data. The two most common approaches
to handling overfitting are cross validation and regularization. Cross vali-
dation can be used to select the complexity of the final output hypothesis
(e.g., to choose the size of the learned decision tree) based on its perfor-
mance on data held out from training. Regularization is typically performed
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by adding a penalty to the learning objective that penalizes the magnitude
of learned parameter values (e.g., in L1 and L2 regularization), providing a
bias in which the learner prefers simpler hypotheses. This increase in bias
typically reduces the sensitivity of the learning algorithm to variance in the
observed training examples. In many cases, regularization is equivalent to
placing a prior probability distribution on the values of the parameters to
be learned, then deriving their MAP estimates (e.g., L2 regularization cor-
responds to a zero mean Gaussian prior, whereas L1 corresponds to a zero
mean Laplace prior).

• Bayesian Networks and Graphical Models. One important family of ma-
chine learning algorithms is based on learning an explicit representation
of the joint probability distribution over a set of variables. For example,
Bayesian Networks are directed acyclic graphs in which each node repre-
sents a random variable, edges represent probabilistic dependencies, and
the collection of conditional probability distributions associated with each
node/variable define the joint distribution over the entire set of variables.
The structure of a Bayesian Network can be viewed as representing assump-
tions about conditional independencies among the different variables, and
it entails a factorization of the joint probability of the n variables into a set
of n terms. By comparing this factorization of the joint probability to the
factorization obtained by the chain rule of probability, one can see explicitly
how the network graph structure restricts the form of the joint distribution.
More general graphical models, including undirected graphical models are
also common.

• Generative versus Discriminative Graphical Models. When designing prob-
abilistic learning algorithms, it can be helpful to distinguish generative ver-
sus discriminative models. Nave Bayes and Logistic regression are an ex-
ample of a generative-discriminative pair of learning methods. Whereas
Naive Bayes represents P(Y |X) and P(Y ) explicitly, Logistic Regression
instead learns the representation of P(Y |X). These are called a generative-
discriminative pair of algorithms because Logistic Regression uses a func-
tional form for P(Y |X) which is entails by the Naive Bayes assumptions.
Similarly, Hidden Markov Models (HMMs) and Conditional Random Fields
(CRFs) are another example of a generative-discriminative pair of algo-
rithms for sequential data. The discriminative version typically has the ad-
vantage that during training it need not obey the constraining assumptions
that its generative counterpart must.

• Deep Neural networks. Neural networks, or deep networks,. are a family of
learning algorithms in which networks of simple, parameterized functional
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units are interconnected to perform a larger computation, and where learn-
ing involves simultaneously training the parameters of all units in the net-
work. Networks containing millions of learned parameters can be trained
using gradient descent methods, often with the help of specialized GPU
hardware. One important development in recent years is the growing use
of a variety of types of units such as non-linear rectilinear units, and units
that contain memory such as Long-Short Term Memory (LSTM) units. A
second important development is the invention of specific architectures for
specific families of problems, such as sequence-to-sequence architectures
used for machine translation and other types of sequential data, and convo-
lutional network architectures for problems such as image classification and
speech recognition where the architecture provides outputs that are invari-
ant of translations to network inputs (e.g. to recognize the same object in
different positions in the input image, or the same speech sound at different
positions in time). An important capability of deep networks is their abil-
ity to learn re-representations of the input data at different hidden layers in
the network. The ability to learn such representations has led, for example,
to networks capable of assigning text captions to input images, based on a
learned internal representation of the image content.

• PAC learning theory. Results from Probably Approximately Correct (PAC)
learning theory provide quantitative bounds on the degree of overfitting that
will occur in specific learning settings. For the common learning problem
of supervised learning of functions f : X→Y , PAC theory bounds the prob-
ability δ that the degree of overfitting [errortrue(h)− errortrain(h)] will ex-
ceed ε if the learning algorithm receives m labeled training examples drawn
at random from a fixed probability distribution P(X). These bounds depend
not only on the number of training examples m, but also on the complex-
ity of the set of hypotheses H considered by the learning algorithm. This
body of theoretical research has uncovered important measures of the com-
plexity of H, including the Vapnik-Chervonenkis (VC) dimension of H, and
the Rademacher complexity of H. Both of these measures capture the ex-
pressive power of H to represent diverse functions that can be defined over
X .

• Learning ensembles of functions. In some cases we can improve the accu-
racy of learned functions (e.g., classifiers) by learning multiple approxima-
tions to the desired target function, then taking a weighted vote of their pre-
dictions. For example, the Weighted Majority Algorithm learns the voting
weights for a given set of alternative approximations to the target function,
in an online setting where a sequence of examples is presented, predictions
are made after each example, and the correct label is then revealed. Af-
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ter each example appears, a weighted vote is taken to produce an ensemble
prediction, and weights of individual ensemble members are adjusted once
the correct label is revealed. Interestingly, it can be proven that the num-
ber of mistakes made by this weighted vote, over the entire sequence of
examples, is only a small multiple of the number of mistakes made by the
best predictor in the ensemble, plus a term which grows only as the log of
the number of members of the ensemble. A second algorithm, called Ad-
aBoost, goes further, by learning both the voting weights and the hypotheses
themselves. It operates by training a sequence of distinct hypotheses from
a single set of training example, by reweighting the training examples to
focus at each iteration on the examples that were previously misclassified.
PAC-style theoretical results bound the degree of overfitting for AdaBoost
based on the VC dimension (complexity) of the hypothesis space used by
the base learner. Boosting algorithms that learn ensembles of short decision
trees (decision forests) are among the most popular classification learning
methods in practice.

• Semi-supervised learning and partially observed training data. When pos-
sible, we would like to augment supervised training of some function by
additional unlabeled data that may be available. One probabilistic approach
to this is Expectation Maximization (EM) where the algorithm iteratively
estimates the values of any unobserved variables (e.g., the labels), then re-
estimates the parameters of the probabilistic graphical model. EM has the
attractive property that it converges to a local maximum in the expected like-
lihood of the full data. A second, very different approach, when learning a
function f : X → Y with a combination of labeled and unlabeled examples,
is to use the unlabeled examples to estimate P(X), so that each labeled ex-
ample can be reweighted by its probability of occurring. A third, again very
different approach is to make use of unlabeled data when learning multiple
functions jointly. For example, co-training algorithms learn two or more
functions based on distinct subsets of the features in X , to predict the same
Y label, then train these distinct functions to both fit the correct labels on
labeled training examples, and to also agree on their predictions for unla-
beled examples. Many other approaches are possible as well, including ap-
proaches that learn many distinct functions whose predictions are coupled
by a variety of constraints that can be tested using unlabeled examples.

• Learning of representations. Although much of machine learning involves
learning functions, it also involves learning useful representations of the in-
put data. For example, given a sample S of data from some d-dimensional
Euclidean space X = ℜd we might wish to learn a more compact repre-
sentation of the data in a lower dimensional space. One approach is to
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train a model that maps data points from S into a lower dimensional space
in a way that allows reconstructing the original d-dimensional data as ac-
curately as possible. This can be accomplished via several methods, in-
cluding training a neural network with a low dimensional hidden layer to
output the same data point it is given as input, factoring the original data
matrix S into the product of two other matrices that share a lower dimen-
sional inner dimension. Principle Components Analysis (PCA) learns a
linear re-representations of the input data in terms of an orthogonal basis
whose top k dimensions give the best possible linear reconstruction of the
original data. Independent Components Analysis (ICA) also learns a linear
re-representations of the input data, but one where the coordinates of the
transformed data are statistically independent. Another approach, this one
probabilistic, is to represent the data as being generated by a probability dis-
tribution conditioned on hidden variables whose values constitute the new
representation, as in mixture of Gaussians models, or a mixture of latent top-
ics using Latent Dirichlet Allocation. In addition to these unsupervised ap-
proaches, supervised methods can be employed to learn re-representations
of the data useful for specific classification or regression problems, rather
than to minimize the reconstruction error of the original data. Supervised
training of neural networks with hidden layers performs exactly this func-
tion, learning re-representations of the input data at its hidden layers, where
the hidden layer representations are optimized to maximize the accuracy of
neural network outputs.

• Kernel methods. Kernel methods allow us to learn highly non-linear func-
tions, where the non-linear function corresponds to a linear function in some
higher dimensional space. To be precise, a kernel function k : X1×X1→ℜ

defined over some vector space X1 calculates the dot (inner) product of two
vectors from X1, after they are projected into a second vector space X2 via
some function Φ : X1→ X2. In other words, k(a,b) = 〈Φ(a),Φ(b)〉 where
a and b are any vectors in X1. The significance of kernel methods is (1)
they often allow using convex linear learning methods to learn non-linear
functions, and (2) the computations they perform are efficient because their
calculations of dot products in the higher dimensional space are performed
efficiently by applying the kernel function instead in the original lower di-
mensional space. Kernel methods can be used for non-linear regression, and
for non-linear classifiers such as Support Vector Machines. Kernel meth-
ods are also used to extend linear algorithms such as Principle Components
Analysis (PCA), and Canonical Correlation Analysis (CCA) to handle non-
linear functions.
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• Distant rewards and reinforcement learning. In standard supervised func-
tion approximation we wish to learning some target function f : X→Y from
labeled training examples corresponding to input-output pairs 〈x(i),y(i)〉 of
f . However, in some applications, such as learning to play Chess or Go,
the training experience can be much different. In such games we wish to
learn a function from the current game state to the move we should make.
However, the training feedback signal is not provided until the game ends,
when we discover whether we have won or lost. To handle this kind of de-
layed feedback, reinforcement learning algorithms can be used, which are
based on a probabilistic decision theoretic formalism called Markov Deci-
sion Processes. In cases where the learner can simulate the effects of each
action (e.g., of any game move), algorithms such as value iteration can be
used, which employ a dynamic programming approach to learn an evalu-
ation function V (s) defined over board states s. In the more difficult case
where the learner is not able to simulate the effects of its actions (e.g., a car
driving on a slippery road), algorithms such as Q-learning can be used to
acquire a similar evaluation function Q(s,a) defined over state-action pairs.
One key advantage of Q-learning is that when the agent finds itself in state
s it can choose the best action simply by finding the action a that maxi-
mizes Q(s,a) even if it cannot predict accurately the next state that will
result in taking this action. In contrast, to choose an action from state s
using V (s), the system must perform a look-ahead search over states result-
ing from candidate actions, which requires the ability to internally simulate
action outcomes.

2.3 Where is Machine Learning Headed Next?
Nobody knows the answer to this question, of course, but my own opinion is that
we are just at the beginning of a decades-long set of advances that will change
the way we think about machine learning, computer science, and human learning.
Surely we will see more research in the near term in the directions that machine
learning is already headed – more research on data-intensive learning, deep neural
networks, probabilistic methods, etc. But I think we will also see advances in
other, very different directions. Below are some examples – advances that might
happen, are not certain to happen, but if they happen then they are likely to have a
major impact on the field of machine learning and on the world.

• Machine learning from user instruction. Today, machine learning algo-
rithms are heavily statistical. But human learning includes other approaches
as well, including learning from instruction. Think of the intelligent assis-
tant in your phone, and think about the conversational interactions you have
with it today. Today, they all involve you commanding the phone to perform
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one of its predefined capabilities (e.g., tell you the weather forecast, or how
to drive to the movie theater). What if you could use that conversation to
teach the phone to do new things (e.g., whenever it snows at night, wake me
up 30 minutes earlier, because I don’t want to be late getting to work.). If
phones could be taught in this way by users, we would suddenly find that we
have billions of programmers - only they would be using natural language
to program their phones instead of learning the language of computers.

• Machine learning by reading. Today, the world wide web contains much of
human knowledge, but mostly in natural language which is not understood
by computers. However, significant advances are now occurring in many
areas of natural language processing (e.g., machine translation). If natu-
ral language understanding reaches a high enough level of competence, we
might suddenly see that learning by reading becomes a dominant compo-
nent of how machines learn. Machines would, unlike us humans, be able to
read the entire web, and they would suddenly be better read than you and I
by a factor of several million.

• Machine learning agents instead of learning single functions. Most ma-
chine learning today involves supervised learning of a single target function
from input-output examples of that function. More and more, we are seeing
AI systems that require many inter-related functions. For example, self-
driving vehicles require a function to choose steering, braking, and accel-
eration actions, but also require functions that spot road obstacles, that pre-
diction motions of nearby vehicles, and many others. The key lesson from
our NELL research, which couples the training of thousands of functions, is
that the learning problems become easier (and can take better advantage of
unlabeled data) when the agent is forced to jointly learn many inter-related
functions. I expect that as the field pursues learning in the context of more
robot and softbot agents which require learning multiple inter-related func-
tions, we may see sudden improvements in learning competence that make
us wonder in retrospect why we spent so much time on the more difficult
problem of learning single functions in isolation.
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