Building a Secure Web Browser*

Sotiris Ioannidis
sotiris@dsl.cis.upenn.edu
University of Pennsylvania

Abstract

Over the last several years, popular application such
as Microsoft Internet Explorer and Netscape Navi-
gator have become prime targets of attacks. These
applications are targeted because their function is
to process unauthenticated network data that often
carry active content. The processing is done either
by helper applications, or by the web browser itself.
In both cases the software is often too complex to
be bug free. To make matters worse, the underly-
ing operating system can do very little to protect
the users against such attacks since the software is
running with the user’s privileges.

We present the architecture of a secure browser, de-
signed to handle attacks by incoming malicious ob-
jects. Our design is based on an operating system
that offers process-specific protection mechanisms.

Keywords: Secure systems, web browser, process—
specific protection.

1 Introduction

In the current highly interconnected computing en-
vironments, Web browsers are probably the most
popular tool for receiving data over the internet.
More often than not, the data come from unauthen-
ticated sources that can potentially be malicious.
Since the incoming data often carry active content
that will be interpreted on the client machine, in
many cases without the users knowledge, a number
of attacks become possible.

To interpret active content web browsers often rely
on helper applications, that become security critical

*This work was supported by DARPA under Contract
F39502-99-1-0512-MOD P0001.

Steven M. Bellovin
smb@research.att.com
AT&T Labs Research

since they operate on untrusted data. These appli-
cations which are often buggy [11], execute with the
users privileges and can therefore compromise the
security of the system. Furthermore the browsers
also interpret code like JavaScript and VBScript [6],
making the browser itself vulnerable !.

In this paper we present the architecture of a secure
web browser. Our system is designed to address the
problems that plague the popular Web browsers by
using support offered by the operating system. We
built our prototype on SubOS [12]. SubOS is an
operating system that offers process-specific protec-
tion mechanisms, which we will explain in Section
3.

The paper is organized as follows. In Section 2 we
discuss the motivation behind this work. In Sec-
tion 3 we give a brief background description of a
SubOS-capable operating system. In Section 4 we
present the architecture of our system. In Section 5
we discuss related work, and finally we conclude in
Section 6.

2 Motivation

With the growth of the Internet, exchange of infor-
mation over wide-area networks has become essen-
tial for users. Web browsers, like Netscape Naviga-
tor and Microsoft Internet explorer often automati-
cally invoke helper application to handle the down-
loaded object. In some cases, like in Perl scripts,
they will query the user about executing it. In oth-
ers, like in Postscript files or Java applets [10, 15, 9],
they will execute the content, possibly compromis-
ing the security of the system. The former approach
puts a lot of burden on the user, who more often
than not is not particularly security conscious. In

IThere are a number of hostile JavaScript and VBScript
sites on the Web, easily found using search engines

the latter case the user is bypassed altogether and
system security becomes dependent on the correct-
ness of the Postscript or Applet viewer.

It is also the case that seemingly inactive objects
like Web pages are very much active and potentially
dangerous. One example is JavaScript [6]programs
which are executed within the security context of
the page with which they were down-loaded, and
they have restricted access to other resources within
the browser. Security flaws exist in certain Web
browsers that permit JavaScript programs to mon-
itor a user’s browser activities beyond the security
context of the page with which the program was
down-loaded (CERT Advisory CA:97.20). It is obvi-
ous that such behavior automatically compromises
the user’s privacy and security.

The lack of flexibility in modern operating systems
is one of the main reasons security is compromised.
The UNIX operating system, in particular, violates
the principle of least privilege. The principle of least
privilege states that a process should have access to
the smallest number of objects necessary to accom-
plish a given task. UNIX only supports two privilege
levels: “root” and “any user”.

To overcome this shortcoming, UNIX, can grant
temporary privileges, namely setuid(2) (set user
id) and setgid(2) (set group id). These commands
allow a program’s user to gain the access rights of
the program’s owner. However, special care must
be taken any time these primitives are used, and as
experience has shown a lack of sufficient caution is
often exploited [13].

Another technique used by UNIX is to change the
apparent root of the file system using chroot(2).
This causes the root of a file system hierarchy vis-
ible to a process to be replaced by a subdirectory.
One such application is the ftpd (8) daemon; it has
full rights in a safe subdirectory, but it cannot ac-
cess anything beyond that. This approach, however,
is very limiting, and in the particular example com-
mands such as 1s(1) become unreachable and have
to be replicated.

These mechanisms are inadequate to handle the
complex security needs of todays applications. This
forces a lot of access control and validity decisions
to user—level software that runs with the full privi-
leges of the invoking user. To overcome these short-
comings applications such as Web browsers become
responsible for accepting requests, granting permis-

sions and managing resources. All this is what
is traditionally done by operating systems. Web
browsers consequently, because of their complexity
as well as the lack of flexibility in the underlying
security mechanisms, possess a number of security
holes. Examples of such problems are numerous,
e.g. JavaScript, malicious Postscript documents,
etc.

We wish to demonstrate how to build a secure
browser, designed to handle attacks by incoming
malicious objects, on top of an an operating system
that offers process-specific protection mechanisms.

3 SubOS-enabled Operating Systems

SubOS is a process—specific protection mechanism,
a more extensive discussion on SubOS can be
found in [12]. Under SubOS any application (e.g.
ghostscript, perl, etc.) that might operate on pos-
sibly malicious objects (e.g. postscript files, perl
scripts, etc.) behaves like an operating system, re-
stricting their accesses to system resources. We are
going to call these applications SubOS processes, or
sub-processes in the rest of this paper. Figures 1
and 2 demonstrate the difference between a regular
and a SubOS-enabled operating system. The access
rights for that object are determined by a sub-user
id that is assigned to it when it is first accepted
by the system. The sub-user id is a similar notion
to the regular UNIX user id’s. In UNIX the user
id determines what resources the user is allowed to
have access to, in SubOS the sub-user id determines
what resources the object is allowed to have access
to. The advantage of using sub-user id’s is that we
can identify individual objects with an immutable
tag, which allows us to bind a set of access rights to
them. This allows for finer grain per-object access
control, as opposed to per-user access control.

The idea becomes clear if we look at the example
shown in Figure 3. Let us assume that our un-
trusted object is a postscript file foo.ps. To that
object we have associated a sub—user id, as we will
discuss in Section 3.1. Foo.ps initially is an inactive
object in the file system. While it remains inac-
tive it poses no threat to the security of the system.
However the moment gs (1) opens it, and starts exe-
cuting its code, foo.ps becomes active, and automat-
ically a possible danger to the system. To contain
this threat, the applications that open untrusted ob-

Applications

Command shell
executing agame
Word processor
viewing afile

Browser
running an applet

Unprotected Space

Operating System

Resources

Protected Space

(CPU, Memory, Disk, Network, etc.)

Figure 1: User applications executing on an operating system maintain the user privileges, allowing
them almost full access to the underlying operating system.

jects, inherit the sub—user id of that objects, and are
hereafter bound to the permissions and privileges
dictated by that sub—user id.

There is a strong analogy here to the standard UNIX
setuid mechanism. When a suitably-marked file is
executed, the process acquires the access rights of
the owner. With SubOS, suitably-marked processes
acquire the access rights of the owner of the files
that they open. In this case, of course, the new
rights are never greater than those the process had
before.

The advantages of our approach become apparent
if we consider the alternative methods of ensuring
that a malicious object does not harm the system.
Again using our postscript example we can execute
foo.ps inside a safe interpreter that will limit its ac-
cess to the underlying file system. There are how-
ever a number of examples on how relying on safe
languages fails [11]. We could execute the postscript
interpreter inside a sandbox using chroot(2), but
this will prohibit it from accessing font files that it
might need. Finally we could read the postscript
code and make sure that it does not include any
malicious commands, but this is impractical.

Our method provides transparency to the user and
increased security since every data object has its ac-
cess rights bound to its identity, preventing it from
harming the system.

Process
File gs foo.ps
fo0.ps sub-user id ~
sub-user id File
foo.ps
sub-user id
Figure 3: In the left part of the Figure we see

an object, in this case a postscript file foo.ps,
with its associated sub—user id. The moment the
ghostscript application opens file Foo.ps, it turns
into a SubOS process and it inherits the sub—user
id that was associated with the untrusted object.
From now on, this process has the permissions
and privileges associated with this sub—user id.

3.1 Security Mechanism Enforcement

As we mentioned earlier in Section 3, every time
the system accepts an incoming object it associates
a sub-user id with it, depending on the credentials
the object carries. The sub-user id is permanently
saved in the Inode of the file that holds that object,
which is now its immutable identity in the system
and specifies what permissions it will have. It has
essentially the same functionality as a UNIX user

_ %) 5
T A=
o > < 22'
Applications % o 52 e 8%
ES T3 a}=
EQ3 9= g
53 =~ S
0% 2
Unprotected Space
. n [%0) n
Operating System Q Q Q
3| 3 3
Resources

Protected Space

(CPU, Memory, Disk, Network, etc.)

Figure 2: Under SubOS enabled operating systems user applications that “touch” possibly malicious
objects no longer maintain the user access rights, and only get restricted access to the underlying

system.

id. One can view this as the equivalent of a user
logging in to the system.

Figure 4 shows the equivalence of the two mecha-
nisms. In the top part of the figure we see the regu-
lar process of a user Bar logging in a UNIX system
Foo and getting a user id. In the same way, objects
that enter the system through ftp, mail, etc., “log
in” and are assigned sub-user id’s based on their
(often cryptographically-verified) source.

4 The Browser Architecture

4.1 The Threat

The use of Java, JavaScript and VBScript in HTML
pages is becoming ever more popular, furthermore
HTML provides support for other scripting lan-
guages with the use of the <SCRIPT> tag [3]. Even
though this functionality is primarily intended to
enhance the capabilities of web pages and the “surf-
ing experience” of the user, it is often used to attack
unsuspecting hosts.

Even worse, the site or host is vulnerable even if
the browser is behind the firewall and the document
is a “secure” HTTPS-based document. JavaScript
programs are executed within the security context
of the page in which they were down-loaded, and

Login User Bar
Host Foo
Password UNIX password
—»l user id l
ftp, mail, Object Bar{pshtml, ...}
Host Foo Web, etc.

Password - Cryptographic Token

—>| sub-user id |

Figure 4: In the top part of the Figure we see the
regular process of a user Bar logging in a UNIX

system Foo and getting a user id. In the same
way objects that enter the system through ftp,
mail, etc., “log in” using a cryptographic token,
and are assigned sub-user id’s.

have restricted access to other resources within the
browser. Some browsers running JavaScript may, in
turn, have security flaws that allow the JavaScript
program to monitor a user’s browser more than
what is considered safe or secure. In addition, it
may be difficult or impossible for the browser user
to determine if the program is transmitting informa-
tion back to the web server. For instance, among

other functions, JavaScript is able to monitor a
user’s browser activity by:

e Observing the URLs of visited documents as
well as bookmarks.

e Observing the data filled into HTML forms (in-
cluding passwords).

e Observing the values of cookies (that might
hold critical information).

In Java the user may or may not be informed that an
applet is being down-loaded into their browser. The
real shock comes when a user inadvertently down-
loads a hostile applet. There are many different
things hostile applets can do to wreak havoc on your
system. Among a few of the most noteworthy are
the following;:

e Reveal information about your machine (e.g.
details about passwords or structure of your
system).

e Allocate resources to the point your machine
“locks up” (i.e. denial of service attacks).

e Delete or alter files.

e Be just plain annoying (e.g. popping countless
windows).

Hostile applets have also been known to have the ca-
pability to contact machines behind firewalls, send
off a listing of a user’s directories, track a user’s ac-
tions through the web, generate machine code, make
directories readable and writable, and send off email
without intention 2.

4.2 Modular Approach

In our architecture we address the two security prob-
lems of Web browsers:

1. Helper applications running with the user’s
privileges.

2There are a number of web sites that list hostile applets,
JavaScript and VBScript, readily available for anyone inter-
ested in launching an attack.

2. Web pages that carry active content that is in-
terpreted by the browser.

To address these problems we will use the mech-
anisms provided by the SubOS-capable operating
system, as well as a modular Web browser archi-
tecture. We divide the Web browser into three
parts, according to its functionality. The first part
is responsible for down-loading objects over the net-
work, the second is responsible for displaying the
content, and the last is a set of helper applica-
tions/interpreters used to process the content of the
down-loaded objects. The design is presented in
Figure 5

Browser Display

Browser Log-in Daemon | ¢———

Browser Interpreter Browser Interpreter

Figure 5: The Web browser is comprised of three
parts. The first part is responsible for down-
loading objects from the net and assigning sub-
user id’s to them. The second provides the user
interface of the browser. Finally the third is a set
of processes that interpret the active code that

is carried by the incoming objects.

We decided against using an existing Web browser
since that would require significant modification to
its architecture. Down-loading and authentication
of objects could be easily achieved by using a proxy,
however execution of embedded code in HTML web
pages would be a lot more challenging, since it would
have to execute in a separate address space to main-
tain its security properties, as we discussed in Sec-
tion 3.

4.2.1 Browser Log-in Daemon

Every object that is down-loaded by our browser
log-in daemon is assigned a sub-user id, which is
bound to some permissions, and is then stored in the

file system. Assignment of sub-user id’s is similar to
the log in mechanism of UNIX. Objects that carry
certificates are given more permissions than unau-
thenticated objects. For example an authenticated
object might get access to /home/user _foobar, net-
work access and unlimited resources, whereas an
unauthenticated objects might only get access to
/tmp with no access to the network and limited CPU
time and memory allocation.

In the current implementation we use the URL ad-
dress is used to select the sub-user id that will be
assigned to the down-loaded object. This approach
of course is not really secure, ideally we should use
some sort of cryptographic token (e.g. a certificate)
that is carried along with the down-loaded object.

4.2.2 Browser Display Daemon

The display daemon is responsible for providing the
user interface of the our Web browser. It can make
requests to the log-in daemon to down-load files, it
is responsible for spawning interpreters to handle
the incoming objects, and display HTML.

4.2.3 Browser Interpreter Daemon

The final part of our web browser is the set of in-
terpreter daemons. These processes have dual func-
tionality; they interpret HTML along with any pos-
sible active content embedded in the web page, and
they execute the helper applications that handle in-
coming objects such as Perl, Postscript, etc.

Objects that are normally handled by helper appli-
cations are also assigned sub-user id’s by the log-
in daemon, the same way as ordinary web pages.
When they are interpreted they are bound to the
permissions of that sub-user id. This way users
don’t need to be queried about every arbitrary ob-
ject they down-load of the net and also don’t have
to worry about executing possibly malicious code on
their machine.

When the interpreter daemon encounters active
code embedded in a web page (by encountering an
<APPLET> or <SCRIPT> tag) it spawns a process to
interpret the Java, JavaScript [1], or Perl code. The
new process inherits the permissions of the parent
process so the active code can never escape it’s sand-
box.

5 Related Work

Web browser security is topic that has received a
great deal of attention since its so crucial in todays
highly interconnected computing. However there
have not been any satisfactory solutions so far. The
primary proposed solution is secure interpreters for
JavaScript, VBScript, Java, etc. [14, 15, 17, 10, 9].
Such solutions fail because their complexity. The
more complex the implementation, the more likely
it is to have bugs. Furthermore they don’t address
the issue of other helper applications like Perl or
Tcl. When they are invoked, the user is queried,
and this puts a lot of burden to the user.

Another language related technique used for ensur-
ing security is code verification. This approach uses
proof-carrying code [16] to demonstrate the security
properties of the object. This means that the object
needs to carry with it a formal proof of its prop-
erties; this proof can be used by the system that
accepts it to ensure that it is not malicious. Code
verification is very limiting since it is hard to cre-
ate such proofs. Furthermore, it does not scale well;
imagine creating a formal proof for every Web page.

A different approach relies on the notion of sys-
tem call interception, as used by systems such as
TRON [5], MAPbox [4], Software Wrappers [7] and
Janus [8]. TRON and Software Wrappers enforce
capabilities by using system call wrappers compiled
into the operating system kernel. The syscall ta-
ble is modified to route control to the appropriate
TRON wrapper for each system call. The wrappers
are responsible for ensuring that the process that
invoked the system call has the necessary permis-
sions. The Janus and MAPbox systems implement
a user-level system call interception mechanism. It
is aimed at confining helper applications (such as
those launched by Web browsers) so that they are
restricted in their use of system calls. To accom-
plish this they use ptrace(2) and the /proc file
system, which allows their tracer to register a call-
back that is executed whenever the tracee issues a
system call. These systems are the most related
to our work; however, our system differs in a ma-
jor point. We view every object as a separate user,
each with its own sub-user id and access rights to
the system resources. This sub-user id is attached
to every incoming object when it is accepted by the
system, and stays with it throughout it’s life, mak-
ing it impossible for malicious objects to escape.

6 Conclusions

We have presented the architecture of a secure web
browser, that protects against malicious incoming
objects. We have implemented a first version of our
prototype on a SubOS-capable OpenBSD 2.8 [2] op-
erating system using Perl.

There are several advantages in our modular archi-
tecture versus the monolithic architecture of popu-
lar Web browsers, such as Netscape Navigator and
Microsoft Internet Explorer. Our design adds a
stage of authentication before any incoming object
is processed. The burden of access control is moved
from the browser and its helper applications, to the
operating system, allowing for a simpler and there-
fore more secure design. Finally the user is not in-
volved in the processing of incoming objects, and
therefore cannot be tricked into executing hostile
code. Presently however, our architecture requires
that the operating system provides a data centric
protection mechanism, that associates permissions
and privileges to data objects. This limits us to
our experimental SubOS-enabled OpenBSD operat-
ing system.

There are still some things that remain to be added
to our prototype in order to offer more complete
functionality:

e We currently don’t support frames. Frames re-
quire special handling since each frame consists
of an HTML document with possibly individ-
ual security properties. In future versions of
our browser we will add this functionality to
the browser display daemon.

e Only a subset of HTML was implemented so
there are a number of tags that need to be
added, along with their possible variables.

e We want to expand the <SCRIPT> tag to deal
with additional embedded scripting languages
other than JavaScript and Perl.

e Finally we need to have some kind of secure au-
thentication mechanism for the browser log-in
daemon. The possible solutions we are consid-
ering are either an additional tag that carries
a certificate in the down-loaded web page, or a
certificate attached to the HTTP request.

7 Acknowledgments

We would like to thank Jonathan M. Smith for
his useful comments and guidance throughout the
course of this work. We also like to thank
the FREENIX 2001 anonymous reviewers and our
“shepherd” Ken Coar for their comments and sug-
gestions on improving this paper.

References

[1] NJS JavaScript Interpreter.
http://www.bbassett.net/njs/.

[2] The OpenBSD Operating System.
http://www.openbsd.org/.

[3] World Wide Web Consortium.

http://www.w3.org/.

[4] Anurag Acharya and Mandar Raje. Map-
box: Using parameterized behavior classes to
confine applications. In Proceedings of the
2000 USENIX Security Symposium, pages 1-
17, Denver, CO, August 2000.

[5] Andrew Berman, Virgil Bourassa, and Erik
Selberg. TRON: Process-Specific File Pro-
tection for the UNIX Operating System. In
USENIX 1995 Technical Conference, New Or-
leans, Louisiana, January 1995.

[6] David Flanagan. JavaScript The Definitive
Guide. O’Reilly, 1998.

[7] Tim Fraser, Lee Badger, and Mark Feldman.
Hardening COTS Software with Generic Soft-
ware Wrappers. In Proceedings of the IEEE
Symposium on Security and Privacy, Oakland,
CA, May 1999.

[8] Ian Goldberg, David Wagner, Randi Thomas,
and Eric A. Brewer. A Secure Environment
for Untrusted Helper Applications. In USENIX
1996 Technical Conference, 1996.

[9] Li Gong. Inside Java 2 Platform Security.
Addison-Wesley, 1999.

[10] James Gosling, Bill Joy, and Guy Steele. The
Java Language Specification. Addison Wesley,
Reading, 1996.

[11] http://www.cert.org/advisories/.

[12]

[13]

[14]

[15]

[16]

[17]

Sotiris Ioannidis and Steven M. Bellovin. Sub-
Operating Systems: A New Approach to Appli-
cation Security. Technical Report MS-CIS-01-
06, University of Pennsylvania, February 2000.

R. Kaplan. SUID and SGID Based Attacks
on UNIX: a Look at One Form of then Use
and Abuse of Privileges. Computer Security
Journal, 9(1):73-7, 1993.

Jacob Y. Levy, Laurent Demailly, John K.
Ousterhout, and Brent B. Welch. The Safe-
Tcl Security Model. In USENIX 1998 Annual
Technical Conference, New Orleans, Louisiana,
June 1998.

Gary McGraw and Edward W. Felten. Java
Security: hostile applets, holes and antidotes.
Wiley, New York, NY, 1997.

G. C. Necula and P. Lee. Safe, Untrusted
Agents using Proof-Carrying Code. In Lec-
ture Notes in Computer Science Special Issue
on Mobile Agents, October 1997.

Dan S. Wallach, Dirk Balfanz, Drew Dean, and
Edward W. Felten. Extensible Security Archi-
tectures for Java. In Proceedings of the 16th
ACM Symposium on Operating Systems Prin-
ciples, October 1997.

