
Concurrent programming in SCOOP:
a hands-on tutorial

Copyright Eiffel Software, 2019

Ever more often, users want programs to be concurrent. A concurrent email client,
for example, lets you download new messages while you are reading earlier ones.
The alternative is a sequential program, which does only one thing at a time: with
a sequential email client, the download would wait while you read, then once
downloading starts you would have to wait before reading again! Not attractive.

SCOOP is the Eiffel mechanism that enables you to make your programs con-
current. The name means Simple Concurrent Object-Oriented Programming. Sim-
plicity is indeed one of SCOOP’s biggest draws. The “S” could also stand for Safe:
concurrent programming with traditional approaches can be very tricky, but
SCOOP removes many of the traditional pitfalls. In particular, SCOOP entirely
eliminate the worst of them, “data races” (read-write concurrency conflicts).

You can study the concepts in the SCOOP pages at eiffel., particularly eif-
fel.org/doc/solutions/Concurrency, and in the documents of the Concurrency Made
Easy project at cme.ethz.ch. This tutorial is a hands-on presentation of the practice
of SCOOP through a simple example, a bare-bones email client.

As you read the text you should edit and run the example. Download EiffelStu-
dio for your platform at eiffel.org, install it, then download the code from eif-
fel.org/files/uploads/mail_client.zip. Unzip it to get three directories (folders):
sequential, concurrent and scratchpad. The tutorial starts from the sequential ver-
sion and makes it concurrent. At any time you can cheat by looking at the final ver-
sion in concurrent. The idea is to leave the code in sequential and concurrent
untouched, for reference; make your changes in scratchpad, which is originally
identical to sequential. If at some point you want to restart from the original ver-
sion, copy all the .e files (Eiffel class texts) back from sequential to scratchpad.

1 ABOUT THE EXAMPLE

The sequential and concurrent versions differ only slightly; basically, we will
obtain the concurrent version by adding a separate mark to the declarations of a
few variables, to specify that certain objects are to be managed concurrently.

https://www.eiffel.org/doc/solutions/Concurrency
https://www.eiffel.org/doc/solutions/Concurrency
http://cme.ethz.ch
https://www.eiffel.org/files/uploads/mail_client.zip
https://www.eiffel.org/files/uploads/mail_client.zip
https://www.eiffel.org

CONCURRENT PROGRAMMING IN SCOOP: A HANDS-ON TUTORIAL §22

That’s one of the fundamental properties of SCOOP: you can retain most of the
classical (sequential) form of programming you know well, adding concurrency
properties only where needed.

In both versions, sequential and concurrent, the system relies on six classes:

• APPLICATION: the small “root class” which starts execution by creating
objects and calling the client.

• CLIENT: there will be one instance of this class, representing the email client
which coordinates between the downloader and viewer.

• DOWNLOADER: also with just one instance, this class is in charge of down-
loading email messages. We don’t really download them from a network, we
just simulate the process by creating boring emails whose texts reads “Message
1”, “Message 2” and so on.

• VIEWER: here too just one instance, a simulated email viewer which randomly
selects a message number (like a human user who would decide to read one
email or another from the list displayed by, say, Microsoft Outlook) and dis-
plays it. If the downloader has not produced the requested message yet, the
viewer will have to wait.

• Auxiliary classes: GENERATOR for producing random messages and waiting
times (between downloads or views) and GLOBAL for global information.

2 RUNNING THE CODE

We start by compiling and running both versions, to see how they behave. Then we
will look at the sequential code (section 3), and in section 4 we will make it parallel.

Go to the sequential directory. Click the file mail_client.ecf, where ecf stands for
Eiffel Control File. This starts EiffelStudio. (The screens in this tutorial were pro-
duced on Windows. On other systems the appearance may vary.) If this is the first
time you are bringing up this project, you will be invited to compile it. Also, if this
is the first time you are using EiffelStudio, it might do some bookkeeping, such as
precompiling libraries, which take some time but won’t have to be done again.

Before we look at the code, let’s see its execution. Click the Run icon on the top
icon bar, center-right. (Or just hit the F5 function key.) In the console window that
comes up, on the left, the downloader will generate messages; on the right, the
viewer will request and read messages:

§2 RUNNING THE CODE 3

(End not shown — it goes on wanting and reading a few more messages.) Well, we
said this is a sequential version! There is only one thread of control, so even though
the viewer requests messages in a random order it must wait patiently until the
downloader has produced all messages. (That’s why we limited the number of mes-
sages to 10 here — no need to wait for more messages to see the point.)

What we want, of course, is to permit the viewer to view a message as soon as
it is available. The concurrent version does that. To see it in action, go now to the
concurrent directory. It has the same files (in fact we will see that the sequential and
concurrent versions of CLIENT, DOWNLOADER and VIEWER differ by only a
handful of small details). As before, click mail_client.ecf. A separate EiffelStudio
window comes up. Compile the system, and run it

Execution:
sequential
version

Execution:
concurrent
version

CONCURRENT PROGRAMMING IN SCOOP: A HANDS-ON TUTORIAL §34

(Again the end is not shown. This version generates 50 messages: see the declara-
tion of Max_messages in class PARAMETERS.) Because this version is concurrent
the exact order of operations depends on scheduling and might be different on your
system. But in any case the improvement over the previous version is clear: the
downloader and viewer execute in parallel. In the execution shown here, the viewer
first requests message 11, and displays it as soon as the downloader produces it;
and so on for subsequent requests.

Now we are going to look at the code and see how SCOOP achieves this result.

3 LOOKING AT THE CODE

First, independently of concurrency properties, we must understand the structure
and implementation of our little email client system. We look at the code in the
sequential version (directory sequential); but the properties reviewed in this section
will remain applicable to the concurrent version.

The data structure is simple, shown by the following illustration:

The class names in parentheses indicate the type of each object. The CLIENT
object maintains a list of strings, the email messages. It has references to a DOWN-
LOADER object and a VIEWER object, each of which knows about their client
through the field client. That’s it for the data structure.

To see the text of any class, select it in under mail_client in the tree view of the
project on the right, or just type its name followed by Enter in the “Class” field. To
view more than one class, you can use several tabs, as with a browser, with the
same keyboard shortcuts (on Windows, Control-T for a new tab, and Control-Tab
to alternate between tabs). Let’s start with the root class, APPLICATION:

(CLIENT)

downloader
viewer

 (STRING)

(VIEWER) (DOWNLOADER)

Basic data
structure (STRING)

client
client

In class
APPLICATION

§3 LOOKING AT THE CODE 5

The creation procedure (constructor) make creates a client object, calls its own
make creation procedure, which sets up the objects; then it starts live which per-
forms the actual execution, a sequential on in this version.

Go to class CLIENT to see the details. Scrolling down a bit (we’ll look at the top
of the class in a second) we see the creation procedure and two declarations:

The client declares the attributes representing the DOWNLOADER and VIEWER
objects, and make creates the corresponding objects by calling their own creation
procedures, also called make. (This is the standard convention, but you can call a
creation procedure any way you like.) We pass Current to these procedures. Cur-
rent is the current object (“this” in some other OO languages). The downloader and
the viewer will need Current to know the client to which they are reporting.

The procedure live is simple: let the downloader and the viewer live, through
their corresponding procedures:

Here we see the hitch in this sequential version: since we have only one thread of
control, we can only let the downloader live its life first, then the viewer. When we
go concurrent, we will start both in parallel, and let them produce and view mes-
sages (respectively) when they are ready to according to their own agendas.

Now scroll back to the beginning of the class:

In class CLIENT

In CLIENT

In CLIENT

CONCURRENT PROGRAMMING IN SCOOP: A HANDS-ON TUTORIAL §36

You see that CLIENT inherits from LINKED_LIST [STRING]. That’s because a cli-
ent will maintain a list of messages. Using object-oriented techniques we simply
declare that any CLIENT is a list. This is a perfectly legitimate use of inheritance,
common in Eiffel style. Not everyone likes to use inheritance this way; if you pre-
fer, you could also skip the inheritance and let CLIENT declare a distinct list of
messages through an attribute:

messages: LINKED_LIST [STRING]

With this other approach the procedure add, which adds a message to the list,
would be different. Here (scroll down a bit) it reads:

where the library procedure extend adds an element to the end of a list. If you did
not use inheritance but a messages attributes, the last instruction would be

messages.extend (l)

but in the version as written above we just apply extend to the current CLIENT
object which, through inheritance, is a list.

In this sequential version the procedure extend is more complicated than
needed. In fact we could do without the local variable l and the creation. The whole
procedure body (the do part) could just read

extend (m)

We made it a bit more wordy to prepare for the concurrent version. The creation
procedure make_from_string, in the library class STRING, creates a string by copy-
ing another one.

That’s it for CLIENT (you can ignore the new_chain implementation function at
the end, a temporary need arising from a property of LINKED_LIST in EiffelStudio
18.11, not needed in future releases). Now let’s look at DOWNLOADER. Its feature
client: CLIENT is initialized in the creation procedure:

In CLIENT

In
DOWNLOADER

§3 LOOKING AT THE CODE 7

By scrolling down you see how a downloader “lives”:

Looking at the body of the loop (after loop), we see that at each iteration the gen-
erator successively:

• Downloads a new message (we will next look at download).

• Computes a waiting time called wait.

• Waits for that duration, by calling sleep (wait). The procedure sleep comes
from the library class EXECUTION_ENVIRONMENT.

The waiting time, in the second step, is obtained through a random number gener-
ator called wait_generator. Such an object is like a little machine, with the opera-
tions forth which advances to the next step, producing a new number, and item,
which gives that number. For the details you can look up the class GENERATOR,
which relies on the library class RANDOM.

The download operation, used at every step of live, is simple:

It increments the message count by 1, produces a message latest including this
count (+ on strings is concatenation, and count.out is the string representation of
the number count), and tells the client to add this message at the end of the list
(remember that the client is a list) through the procedure add seen above:

The only difference with a real email system is that we make a message up (reading
“Message n”) rather than downloading an actual email message from the network.

In
DOWNLOADER

In
DOWNLOADER

In
DOWNLOADER

CONCURRENT PROGRAMMING IN SCOOP: A HANDS-ON TUTORIAL §48

Finally, the viewer. It is based on similar conventions. Bring up class VIEWER.
The structure is as with DOWNLOADER; scroll down to see the loop in live:

At every iteration, the viewer picks a random number to select a message to view,
then says it “wants” to view this message. Then it views it and waits a randomly
generated time (using a different random generator). Here are “wants” and “view”:

Each of these procedures simply outputs a line, saying respectively that the viewer
wants a certain message, and that it is reading that message. %T is a tab character.

Now we are going to keep these structures and make the execution concurrent.

4 GOING SEPARATE

The key SCOOP concept is the notion of a separate object. This is also the only
keyword you will ever have to learn to go concurrent: separate. To understand it,
let us go back to the original data structure illustration and see what it becomes in
the concurrent version:

In VIEWER

In VIEWER

§4 GOING SEPARATE 9

The data structure does not change but its constituent objects are now spread
across three regions. A region is simply a group of objects. In SCOOP, every
run-time object will belong to one of the regions. (In other words, the regions con-
stitute a partition of the set of objects.) Every region has an associated processor;
the role of the processor is to execute operations on objects of its regions. So if cli-
ent denotes the CLIENT object above, any client.add (message) operation, adding
message to the end of the list, will be executed by the processor of Region 1. Any
operation on the viewer will be executed by the processor of Region 2, and any
operation on the downloader by the processor of Region 3.

A “processor” not necessarily a physical CPU but simply a mechanism that can
execute instructions in sequence. In the current SCOOP implementation it is usu-
ally a thread. Whatever the implementation, a processor is strictly sequential; con-
currency comes from having several processors.

If two objects belong to different regions, they are said to be separate from each
other. A reference to an object in another region is called a separate reference. Here
the downloader and viewer references in the client, and client in both the viewer
and the downloader, are all separate.

How do we get multiple regions and, as a result, separate references? Simple. If
you want a reference to be potentially separate at run time, declare the type of the
corresponding variable (or formal argument etc.) not just for example as VIEWER
but as separate VIEWER.

That’s what we are going to do now in the example: declare as separate every-
thing that can, during an execution, denote a separate object.

Leave the sequential and concurrent versions untouched for reference and go to
the scratchpad directory where you will make the changes. The code is initially
identical to the sequential version. Start a new instance of EiffelStudio on this proj-
ect by clicking mail_client.ecf, and compile.

In class CLIENT, add the separate mark to the declarations of the downloader
and viewer:

(CLIENT)

downloader
viewer

 (STRING)

(VIEWER) (DOWNLOADER)

Basic data
structures and
their regions (STRING)

client
client

Region 3Region 2

Region 1

Region boundary

CONCURRENT PROGRAMMING IN SCOOP: A HANDS-ON TUTORIAL §410

If the viewer and downloader are separate from the client, the client is separate
from each of them. Since you have not specified this property yet, if you recompile
at this point you get an error message:

For the rest of this presentation, we are going to consider compiler error messages
not as a nuisance but as precious help to get our concurrent software right. The big
prize at the end is the guaranteed absence of data races. We are going to fix the last
two error messages first. Declare the argument of make as separate in VIEWER:

Do the same in DOWNLOADER: the type argument type of make in that class is
CLIENT; change it to separate CLIENT.

When you recompile, you still get four errors, including two new ones. Click the
“+” sign on the left to see the detailed message:

In CLIENT

In VIEWER

In VIEWER

§4 GOING SEPARATE 11

The message says it all: “Source of assignment is not compatible with target”. A
basic type rule of SCOOP is that you cannot assign a separate expression, here c,
to a non-separate target, here client. Why? Looking at the figure on page 9, client
is a field of an object in region 1, but assigning it the reference c will cause it to
denote an object in Region 1. This is the right behavior, but to reflect the run-time
separateness of this reference we must declare client separate as well as c.

A variable not declared separate, but denoting an object in another region,
would be called a traitor. As part of avoiding data races, the SCOOP type system
ensures that no execution will every produce a traitor.

Note that, the other way around, sep := nonsep (with sep separate and nonsep
non-separate) is OK: declaring a variable as “separate” means that the correspond-
ing objects might be in another region, not that they have to. It could happen that
in some executions sep stays in the same region.

Of course client must be separate in VIEWER since (see the figure page 9) the
viewer is in region 2 and the client in region 1. Fix the declaration of client (towards
the end of class VIEWER)

Do the same for client in DOWNLOADER and recompile.

This actually yields more compilation errors but (believe it or not) we are pro-
gressing! The first error message points to the routine live of VIEWER:

In VIEWER

CONCURRENT PROGRAMMING IN SCOOP: A HANDS-ON TUTORIAL §412

At issue is the function i_th , called by live, which takes a CLIENT as its first argu-
ment. Obviously this should be separate CLIENT. Fix this and recompile; there is
still something wrong with i_th:

Since c.i_th (i) returns the last element of the list of messages from the (separate)
client, that list and the result of i_th are separate. So s should be separate too. Add
separate to the declaration of s. This is not enough (as you will see if you compile
now): for the Result of i_th, we want a string in the same region, not a separate one.
So instead of make_from_string we must use make_from_separate, another cre-
ation procedure from the library class STRING, designed expressly for such cases:
make_from_separate initializes a string by copying from a string in a possibly dif-
ferent region. Correct i_th to use this creation procedure:

Recompile. Four errors remain :

The second one, having to do with DOWNLOADER.record, is similar to what was
wrong with live and i_th in VIEWER. The offending routine is add of CLIENT. Cor-
rect it to make sure that its argument is separate and to use make_from_separate
instead of make_from_string:

In VIEWER

§4 GOING SEPARATE 13

Recompile; the other three errors are still there. They all say that the “separate tar-
get” of a call is not “controlled”. We are seeing a key property of SCOOP. If you
have a call x.r (...) where the target x is separate, then x must be “controlled”,
meaning that the caller has obtained exclusive access to its processor, and hence to
all the objects in its region. Then no one else can access it and you have removed
any possibility of data race.

There are two ways of controlling an object. Let’s try the first one, starting with
the first error message. It has to do with record in DOWNLOADER, which reads

The call client.add (latest) is invalid in SCOOP because client is now separate but
not controlled. We make it controlled through the separate instruction (not to be
confused with the separate declaration), changing the declaration into:

(If you compile now you see that the first error is gone.) What does the separate
instruction mean? It directs the caller to gain exclusive access to client under the
name c, meaning exclusive access to its processor (and all other objects in its
region). Of course if that processor was already controlled by someone else we will
have to wait. But when we finally get the client object, we have the guarantee that
it is available to us, and to us only, under the local name c.

This resource reservation mechanism is very general; it lets you, in one shot, get
exclusive control not just of one processor as here but of any number of objects
and their processors. Just write separate a as x, b as y, ... do ... end. No need to use
complex algorithms to lock one object, then the next, and to back up at that stage
if you fail (to avoid deadlock). SCOOP guarantees that when you get the objects
you get all of them.

In CLIENT

In
DOWNLOADER

In
DOWNLOADER

CONCURRENT PROGRAMMING IN SCOOP: A HANDS-ON TUTORIAL §514

We can take advantage of this property to remove the two remaining “target not
controlled” errors, which are for live in CLIENT. Just replace

by

In one shot, the separate instruction gives us simultaneous exclusive access to the
processors for both the downloader and viewer, meaning to regions 2 and 3 in the
figure of page 9.

You might fear that this instruction locks these regions for the entire execution,
but that is not what it means. live needs exclusive access to the downloader and
viewer for a very short period only: just long enough to start d.live and v.live. Such
calls, having a separate target, are asynchronous, meaning they get executed on
their own processors; the caller, here live, just logs the calls and moves on with its
own business without waiting. Think of starting off a print job and proceeding with
the rest of your work without waiting for the print’s completion.

Recompile; this time the program compiles without error. Not only that, but it
now has the desired concurrent semantics! (As last touches, in the message to be
output at the beginning of execution by CLIENT.make, replace “SEQUENTIAL” by
“CONCURRENT”, and for more interesting results change the value of Max_mes-
sages in class PARAMETERS from 10 to 50.) Click Run and you will see the con-
current version at work, as in the figure of page 3. Victory!

5 PROBING FURTHER

Let’s consider three more properties of SCOOP visible on this example.

We noted above that the separate instruction is one of two ways to gain exclu-
sive access. The other one is even simpler. If you call r (x) where the corresponding
formal argument in r is separate, then the execution of r gains exclusive access to
x. So when DOWNLOADER.record calls CLIENT.add, declared (see page 13) as

In CLIENT

In CLIENT

In CLIENT

§6 ON WITH SCOOP 15

this routine has exclusive access to m (and temporarily transfers it to make_-
from_separate). As with the separate instruction, this mechanism is applicable to
any number of separate arguments, not just one.

Next, with the concept of asynchronous call (as with d.live where d is the down-
loader) the question arises of how to resynchronize with a call that you have started
asynchronously (like going to the printer to get your printout). The SCOOP answer
is simple: as soon as you query the target object, for example with a function call
such as d.count, you will have to wait for all previous calls to d to have completed.

Finally, preconditions as wait conditions. Consider the function i_th in
VIEWER. It reads:

The precondition (require clause) states that we can only obtain a message that has
already been made available to the client, meaning its message number i is no
greater than the client’s count of messages downloaded thus far. That precondition
involves c.count where c is separate. Such a precondition is not (as in sequential
code) a correctness condition, which would be useless here. It is a wait condition.
The execution of i_th will wait until the client not only is available (since the argu-
ment c is separate) but also, per the precondition, has at least i messages.

This is the behavior we want: when the user requests a message, the viewer
should wait until that message becomes available. Of course if there are several
separate preconditions, execution will wait until all are satisfied. Think of how dif-
ficult it would be to program such behaviors manually; in SCOOP, you just write
the wait conditions as precondition clauses.

This powerful mechanism is the SCOOP technique for waiting on single or mul-
tiple conditions.

6 ON WITH SCOOP

With this tutorial you have seen all of the key SCOOP concepts (remember, the S
is for “simple”). Of course there have many interesting consequences. To explore
SCOOP in depth you can start from the references given in the introduction. Note
in particular the collection of classical concurrency examples (dining philosophers,
barber shop and many others), which complement the email client example.

SCOOP has been designed to make concurrent programming safe and pleasur-
able. We hope you enjoy SCOOP and use it to build many great concurrent systems.

In VIEWER

https://www.eiffel.org/doc/solutions/SCOOP_examples

	Concurrent programming in SCOOP: a hands-on tutorial
	1 About the example
	2 Running the code
	3 Looking at the code
	4 Going separate
	5 Probing further
	6 On with SCOOP

