An automorphic number is a number whose square ends in the same digits as the number itself. A number n is called automorphic if:
n2 (mod  10d) = n
where d is the number of digits in n.
Examples:
- n = 5:
- n2 = 25
- Last digit of 25 is 5, so 5 is automorphic.
- n = 76:
- n2 = 5776
- Last two digits of 5776 are 76, so 76 is automorphic.
- n = 6:
- n2 = 36
- Last digit of 36 is 6, so 6 is automorphic.
- n = 25:
- n2 = 625
- Last two digits of 625 are 25, so 25 is automorphic.
Given a number N, the task is to check whether the number is an Automorphic number or not. A number is called an Automorphic number if and only if its square ends in the same digits as the number itself.
Examples :
Input : N = 76
Output : Automorphic
Explanation: As 76*76 = 5776
Input : N = 25
Output : Automorphic
As 25*25 = 625
Input : N = 7
Output : Not Automorphic
As 7*7 = 49
Approach:
- Store the square of given number.
- Loop until N becomes 0 as we have to match all digits with its square.
- Check if (n%10 == sq%10) i.e. last digit of number = last digit of square or not
- if not equal, return false.
- Otherwise, continue i.e. reduce the number and square i.e. n = n/10 and sq = sq/10;
- Return true if all digits matched.
Below is the implementation of the above approach:
C++
// C++ program to check if a number is Automorphic
#include <iostream>
using namespace std;
// Function to check Automorphic number
bool isAutomorphic(int N)
{
if(N < 0) N = -N;
// Store the square
int sq = N * N;
// Start Comparing digits
while (N > 0) {
// Return false, if any digit of N doesn't
// match with its square's digits from last
if (N % 10 != sq % 10)
return false;
// Reduce N and square
N /= 10;
sq /= 10;
}
return true;
}
// Driver code
int main()
{
int N = 5;
isAutomorphic(N) ? cout << "Automorphic"
: cout << "Not Automorphic";
return 0;
}
Java
// Java program to check if a number is Automorphic
import java.io.*;
class Test {
// Function to check Automorphic number
static boolean isAutomorphic(int N)
{
// Store the square
if(N < 0) N = -N;
int sq = N * N;
// Start Comparing digits
while (N > 0) {
// Return false, if any digit of N doesn't
// match with its square's digits from last
if (N % 10 != sq % 10)
return false;
// Reduce N and square
N /= 10;
sq /= 10;
}
return true;
}
// Driver method
public static void main(String[] args)
{
int N = 5;
System.out.println(isAutomorphic(N) ? "Automorphic" : "Not Automorphic");
}
}
Python
# Python program to check if a number is Automorphic
# Function to check Automorphic number
def isAutomorphic(N):
# Store the square
if N < 0:
N = -N
sq = N * N
# Start Comparing digits
while (N > 0) :
# Return false, if any digit of N doesn't
# match with its square's digits from last
if (N % 10 != sq % 10) :
return False
# Reduce N and square
N //= 10
sq //= 10
return True
# Driver code
N = 5
if isAutomorphic(N) :
print ("Automorphic")
else :
print ("Not Automorphic")
# This Code is contributed by Nikita Tiwari.
C#
// C# program to check if a
// number is Automorphic
using System;
class GFG {
// Function to check Automorphic number
static bool isAutomorphic(int N)
{
// Store the square
if(N < 0) N = -N;
int sq = N * N;
// Start Comparing digits
while (N > 0) {
// Return false, if any digit
// of N doesn't match with its
// square's digits from last
if (N % 10 != sq % 10)
return false;
// Reduce N and square
N /= 10;
sq /= 10;
}
return true;
}
// Driver Code
public static void Main()
{
int N = 5;
Console.Write(isAutomorphic(N) ? "Automorphic" : "Not Automorphic");
}
}
// This code is Contributed by Nitin Mittal.
JavaScript
<script>
// Javascript program to check if
// a number is Automorphic
// Function to check
// Automorphic number
function isAutomorphic(N)
{
// Store the square
if(N < 0) N = -N;
let sq = N * N;
// Start Comparing digits
while (N > 0)
{
// Return false, if any
// digit of N doesn't
// match with its square's
// digits from last
if (N % 10 != sq % 10)
return -1;
// Reduce N and square
N /= 10;
sq /= 10;
}
return 1;
}
// Driver code
let N = 5;
let geeks = isAutomorphic(N) ?
"Automorphic" :
"Not Automorphic";
document.write(geeks);
// This code is contributed by _saurabh_jaiswal
</script>
PHP
<?php
// PHP program to check if
// a number is Automorphic
// Function to check
// Automorphic number
function isAutomorphic($N)
{
// Store the square
if($N < 0) $N = -$N;
$sq = $N * $N;
// Start Comparing digits
while ($N > 0)
{
// Return false, if any
// digit of N doesn't
// match with its square's
// digits from last
if ($N % 10 != $sq % 10)
return -1;
// Reduce N and square
$N /= 10;
$sq /= 10;
}
return 1;
}
// Driver code
$N = 5;
$geeks = isAutomorphic($N) ?
"Automorphic" :
"Not Automorphic";
echo $geeks;
// This code is contributed by ajit
?>
Time Complexity: O(log10N)
Auxiliary Space: O(1)
Another Approach to Solve the Problem
- Do first check if number is negative then make it positive.
- Store the square of number.
- Find the count of the digit of the number sothat you can find the count of digit of last number of the square of the number equal to the number i.e it doesn't mean if the count of digit of last number of square is equal to the number will be equal to each other.
- And after counting the digit of the number perform : - squareNum%power(10, count)
- Finally check the last number of square of number is equal to number or not.
Let's see the implementation as explained for above approach : -
C++
#include <iostream>
#include <math.h>
using namespace std;
bool checkAuto(int a){
if(a < 0) a = -a;
int squareNum = a*a;
int temp = a;
int count = 0; // count of digit of a
int lastNum = 0;
while(temp > 0){
count++;
temp = temp/10;
}
int lastDigit = (squareNum)%(int(pow(10, count)));
if(lastDigit == a) return true;
else return false;
}
int main() {
int num = -4;
if(checkAuto(num)) cout << "Automorphic";
else cout << "Not Automorphic";
cout << endl;
return 0;
}
Java
import java.io.*;
import java.util.*;
public class Solution {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int a = -4;
if(a < 0) a = -a;
int squareNum = a*a;
int temp = a;
int count = 0; // count of digit of a
while(temp > 0){
count++;
temp = temp/10;
}
int lastDigit = squareNum%(int)Math.pow(10, count);
// System.out.print(lastDigit);
if(lastDigit == a) System.out.print("Automorphic");
else System.out.print("Not Automorphic");
}
}
Python
def checkAuto(a):
if a < 0: a = -a
squareNum = a*a
temp = a
count = 0
while temp != 0:
count += 1
temp = int(temp/10)
lastDigit = squareNum%pow(10, count)
if lastDigit == a:
return "Automorphic"
else:
return "Not Automorphic"
num = -4
print(checkAuto(num))
C#
using System;
class Solution {
static void Main(string[] args)
{
int a = -4;
if (a < 0)
a = -a;
int squareNum = a * a;
int temp = a;
int count = 0; // count of digit of a
while (temp > 0) {
count++;
temp = temp / 10;
}
int lastDigit
= squareNum % (int)Math.Pow(10, count);
// Console.Write(lastDigit);
if (lastDigit == a)
Console.Write("Automorphic");
else
Console.Write("Not Automorphic");
}
}
JavaScript
function checkAuto(a){
if(a < 0) a = -a;
let squareNum = a*a;
let temp = a;
let count = 0; // count of digit of a
while(temp > 0){
count++;
temp = Math.floor(temp/10);
}
let lastDigit = (squareNum)%(Math.pow(10, count));
if(lastDigit == a) return 1;
else return 0;
}
let num = -4;
if(checkAuto(num)) console.log("Automorphic");
else console.log("Not Automorphic");
Time Complexity: - O(log10N), where N is the given number.
Auxiliary Space:- O(1)
Similar Reads
Mathematical Algorithms - Number Digits "Mathematical Algorithms | Number Digits" is a guide that explores problems and solutions involving digits. It covers common digit-related issues, such as digit properties, manipulation, and counting under constraints. The article discusses algorithmic approaches like modular arithmetic, string hand
9 min read
Self Numbers A Number N is said to be Self Number if it can not be written as M + sum of digits of M for any M.The first few Self numbers are: 1, 3, 5, 7, 9, 20, 31, 42................ Check if N is a Self number Given an integer N, the task is to find if this number is Self number or not. Examples: Input: N = 3
5 min read
Special two digit number A special two-digit number is a number such that when the sum of the digits of the number is added to the product of its digits, the result is equal to the original two-digit number. Examples : input : 59. output : 59 is a Special Two-Digit Number Explanation: Sum of digits = 5 + 9 = 14 Product of i
6 min read
POTD Solutions | 10 Novâ 23 | Number following a pattern Welcome to the daily solutions of our PROBLEM OF THE DAY (POTD). We will discuss the entire problem step-by-step and work towards developing an optimized solution. This will not only help you brush up on your concepts of Stack and Two Pointer Algorithm but will also help you build up problem-solving
6 min read
Game of Numbers - Playing with Numbers | Class 8 Maths We use numbers in our day-to-day life. We buy everything with money and measure its quantity with the help of Numbers only. Therefore Numbers play a very significant role in our life. The common Representation of a Number is as follows: The general form of a two-digit number is ab=(10 Ã a)+b Here ab
9 min read