Construct a Perfect Binary Tree from Preorder Traversal
Last Updated :
20 Oct, 2021
Given an array pre[], representing the Preorder traversal of a Perfect Binary Tree consisting of N nodes, the task is to construct a Perfect Binary Tree from the given Preorder Traversal and return the root of the tree.
Examples:
Input: pre[] = {1, 2, 4, 5, 3, 6, 7}
Output:
1
/ \
/ \
2 3
/ \ / \
/ \ / \
4 5 6 7
Input: pre[] = {1, 2, 3}
Output:
1
/ \
/ \
2 3
Generally to construct a binary tree, we can not do it by only using the preorder traversal, but here an extra condition is given that the binary tree is Perfect binary tree. We can use that extra condition.
For Perfect binary tree every node has either 2 or 0 children , and all the leaf nodes are present at same level. And the preorder traversal of a binary tree contains the root first, then the preorder traversal of the left subtree, then the preorder traversal of the right subtree . So for Perfect binary tree root should have same numbers of children in both subtrees , so the number ( say, n) of elements after the root in the preorder traversal should be even (2 * number of nodes in one subtree , as it is Perfect binary tree) . And since each subtrees have equal number of nodes for Perfect binary tree, we can find the preorder traversal of the left subtree (which is half of the array after the root in preorder traversal of the whole tree), and we know the preorder traversal of the right subtree must be after the preorder traversal of the left subtree, so rest half is the preorder traversal of the right subtree.
So the first element in the preorder traversal is the root, we will build a node as the root with this element , then we can easily find the preorder traversals of the left and right subtrees of the root, and we will recursively build the left and right subtrees of the root.
Approach: The given problem can be solved using recursion. Follow the steps below to solve the problem:
- Create a function, say BuildPerfectBT_helper with parameters as preStart, preEnd, pre[] where preStart represent starting index of the array pre[] and preEnd represents the ending index of the array pre[] and perform the following steps:
- If the value of preStart is greater than preEnd, then return NULL.
- Initialize root as pre[preStart].
- If the value of preStart is the same as the preEnd, then return root.
- Initialize 4 variable, say leftPreStart as preStart + 1, rightPreStart as leftPreStart + (preEnd - leftPreStart+1)/2, leftPreEnd as rightPreStart - 1 and rightPreEnd as preEnd.
- Modify the value of root->left by recursively calling the function buildPerfectBT_helper() with the parameters leftPreStart, leftPreEnd and pre[].
- Modify the value of root->right by recursively calling the function buildPerfectBT_helper() with the parameters rightPreStart, rightPreEnd and pre[].
- After performing the above steps, return root.
- After creating the Perfect Binary Tree, print the Inorder traversal of the tree.
Below is the illustration of the above steps discussed:
Step 1: build([1, 2, 4, 5, 3, 6, 7])
Step 2:
1
/ \
/ \
build([2, 4, 5]) build([3, 6, 7])
Now first element (1 here) is root, then the subarray after the first element ( which is [2,4,5,3,6,7] here ) contains the preorder traversals of the left and right subtrees. And we know left subtree's preorder traversal is first half , i.e, [2,4,5] , and the right subtree's preorder traversal is the second half , i.e, [3,6,7]. Now recursively build the left and right subtrees.
Step 3:
1
___________|_________________
/ \
/ \
2 3
______/___________ _______\____________
/ \ / \
/ \ / \
build([4]) build([5]) build([6]) build([7])
Step 4:
1
/ \
/ \
2 3
/ \ / \
/ \ / \
4 5 6 7
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Structure of the tree
struct Node {
int data;
Node *left, *right;
Node(int val)
{
data = val;
left = right = NULL;
}
};
// Function to create a new node with
// the value val
Node* getNewNode(int val)
{
Node* newNode = new Node(val);
newNode->data = val;
newNode->left = newNode->right = NULL;
// Return the newly created node
return newNode;
}
// Function to create the Perfect
// Binary Tree
Node* buildPerfectBT_helper(int preStart,
int preEnd,
int pre[])
{
// If preStart > preEnd return NULL
if (preStart > preEnd)
return NULL;
// Initialize root as pre[preStart]
Node* root = getNewNode(pre[preStart]);
;
// If the only node is left,
// then return node
if (preStart == preEnd)
return root;
// Parameters for further recursion
int leftPreStart = preStart + 1;
int rightPreStart = leftPreStart
+ (preEnd - leftPreStart + 1) / 2;
int leftPreEnd = rightPreStart - 1;
int rightPreEnd = preEnd;
// Recursive Call to build the
// subtree of root node
root->left = buildPerfectBT_helper(
leftPreStart, leftPreEnd, pre);
root->right = buildPerfectBT_helper(
rightPreStart, rightPreEnd, pre);
// Return the created root
return root;
}
// Function to build Perfect Binary Tree
Node* buildPerfectBT(int pre[], int size)
{
return buildPerfectBT_helper(0, size - 1, pre);
}
// Function to print the Inorder of
// the given Tree
void printInorder(Node* root)
{
// Base Case
if (!root)
return;
// Left Recursive Call
printInorder(root->left);
// Print the data
cout << root->data << " ";
// Right Recursive Call
printInorder(root->right);
}
// Driver Code
int main()
{
int pre[] = { 1, 2, 4, 5, 3, 6, 7 };
int N = sizeof(pre) / sizeof(pre[0]);
// Function Call
Node* root = buildPerfectBT(pre, N);
// Print Inorder Traversal
cout << "\nInorder traversal of the tree: ";
printInorder(root);
return 0;
}
Java
// Java program for the above approach
public class Main
{
// Structure of the tree
static class Node {
public int data;
public Node left, right;
public Node(int val)
{
data = val;
left = right = null;
}
}
// Function to create a new node with
// the value val
static Node getNewNode(int val)
{
Node newNode = new Node(val);
// Return the newly created node
return newNode;
}
// Function to create the Perfect
// Binary Tree
static Node buildPerfectBT_helper(int preStart, int preEnd, int[] pre)
{
// If preStart > preEnd return NULL
if (preStart > preEnd)
return null;
// Initialize root as pre[preStart]
Node root = getNewNode(pre[preStart]);
// If the only node is left,
// then return node
if (preStart == preEnd)
return root;
// Parameters for further recursion
int leftPreStart = preStart + 1;
int rightPreStart = leftPreStart + (preEnd - leftPreStart + 1) / 2;
int leftPreEnd = rightPreStart - 1;
int rightPreEnd = preEnd;
// Recursive Call to build the
// subtree of root node
root.left = buildPerfectBT_helper(
leftPreStart, leftPreEnd, pre);
root.right = buildPerfectBT_helper(
rightPreStart, rightPreEnd, pre);
// Return the created root
return root;
}
// Function to build Perfect Binary Tree
static Node buildPerfectBT(int[] pre, int size)
{
return buildPerfectBT_helper(0, size - 1, pre);
}
// Function to print the Inorder of
// the given Tree
static void printInorder(Node root)
{
// Base Case
if (root == null)
return;
// Left Recursive Call
printInorder(root.left);
// Print the data
System.out.print(root.data + " ");
// Right Recursive Call
printInorder(root.right);
}
public static void main(String[] args) {
int[] pre = { 1, 2, 4, 5, 3, 6, 7 };
int N = pre.length;
// Function Call
Node root = buildPerfectBT(pre, N);
// Print Inorder Traversal
System.out.print("Inorder traversal of the tree: ");
printInorder(root);
}
}
// This code is contributed by suresh07.
Python3
# Python3 program for the above approach
# Structure of the tree
class Node:
def __init__(self, val):
self.data = val
self.left = None
self.right = None
# Function to create a new node with
# the value val
def getNewNode(val):
newNode = Node(val)
# Return the newly created node
return newNode
# Function to create the Perfect
# Binary Tree
def buildPerfectBT_helper(preStart, preEnd, pre):
# If preStart > preEnd return NULL
if (preStart > preEnd):
return None
# Initialize root as pre[preStart]
root = getNewNode(pre[preStart])
# If the only node is left,
# then return node
if (preStart == preEnd):
return root
# Parameters for further recursion
leftPreStart = preStart + 1
rightPreStart = leftPreStart + int((preEnd - leftPreStart + 1) / 2)
leftPreEnd = rightPreStart - 1
rightPreEnd = preEnd
# Recursive Call to build the
# subtree of root node
root.left = buildPerfectBT_helper(leftPreStart, leftPreEnd, pre)
root.right = buildPerfectBT_helper(rightPreStart, rightPreEnd, pre)
# Return the created root
return root
# Function to build Perfect Binary Tree
def buildPerfectBT(pre, size):
return buildPerfectBT_helper(0, size - 1, pre)
# Function to print the Inorder of
# the given Tree
def printInorder(root):
# Base Case
if (root == None):
return
# Left Recursive Call
printInorder(root.left)
# Print the data
print(root.data, "", end = "")
# Right Recursive Call
printInorder(root.right)
pre = [ 1, 2, 4, 5, 3, 6, 7 ]
N = len(pre)
# Function Call
root = buildPerfectBT(pre, N)
# Print Inorder Traversal
print("Inorder traversal of the tree: ", end = "")
printInorder(root)
# This code is contributed by decode2207.
C#
// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG {
// Structure of the tree
class Node {
public int data;
public Node left, right;
public Node(int val)
{
data = val;
left = right = null;
}
}
// Function to create a new node with
// the value val
static Node getNewNode(int val)
{
Node newNode = new Node(val);
// Return the newly created node
return newNode;
}
// Function to create the Perfect
// Binary Tree
static Node buildPerfectBT_helper(int preStart, int preEnd, int[] pre)
{
// If preStart > preEnd return NULL
if (preStart > preEnd)
return null;
// Initialize root as pre[preStart]
Node root = getNewNode(pre[preStart]);
// If the only node is left,
// then return node
if (preStart == preEnd)
return root;
// Parameters for further recursion
int leftPreStart = preStart + 1;
int rightPreStart = leftPreStart + (preEnd - leftPreStart + 1) / 2;
int leftPreEnd = rightPreStart - 1;
int rightPreEnd = preEnd;
// Recursive Call to build the
// subtree of root node
root.left = buildPerfectBT_helper(
leftPreStart, leftPreEnd, pre);
root.right = buildPerfectBT_helper(
rightPreStart, rightPreEnd, pre);
// Return the created root
return root;
}
// Function to build Perfect Binary Tree
static Node buildPerfectBT(int[] pre, int size)
{
return buildPerfectBT_helper(0, size - 1, pre);
}
// Function to print the Inorder of
// the given Tree
static void printInorder(Node root)
{
// Base Case
if (root == null)
return;
// Left Recursive Call
printInorder(root.left);
// Print the data
Console.Write(root.data + " ");
// Right Recursive Call
printInorder(root.right);
}
static void Main() {
int[] pre = { 1, 2, 4, 5, 3, 6, 7 };
int N = pre.Length;
// Function Call
Node root = buildPerfectBT(pre, N);
// Print Inorder Traversal
Console.Write("Inorder traversal of the tree: ");
printInorder(root);
}
}
// This code is contributed by mukesh07.
JavaScript
<script>
// Javascript program for the above approach
// Structure of the tree
class Node
{
constructor(val) {
this.left = null;
this.right = null;
this.data = val;
}
}
// Function to create a new node with
// the value val
function getNewNode(val)
{
let newNode = new Node(val);
// Return the newly created node
return newNode;
}
// Function to create the Perfect
// Binary Tree
function buildPerfectBT_helper(preStart, preEnd, pre)
{
// If preStart > preEnd return NULL
if (preStart > preEnd)
return null;
// Initialize root as pre[preStart]
let root = getNewNode(pre[preStart]);
// If the only node is left,
// then return node
if (preStart == preEnd)
return root;
// Parameters for further recursion
let leftPreStart = preStart + 1;
let rightPreStart = leftPreStart
+ parseInt((preEnd - leftPreStart + 1) / 2);
let leftPreEnd = rightPreStart - 1;
let rightPreEnd = preEnd;
// Recursive Call to build the
// subtree of root node
root.left = buildPerfectBT_helper(
leftPreStart, leftPreEnd, pre);
root.right = buildPerfectBT_helper(
rightPreStart, rightPreEnd, pre);
// Return the created root
return root;
}
// Function to build Perfect Binary Tree
function buildPerfectBT(pre, size)
{
return buildPerfectBT_helper(0, size - 1, pre);
}
// Function to print the Inorder of
// the given Tree
function printInorder(root)
{
// Base Case
if (root == null)
return;
// Left Recursive Call
printInorder(root.left);
// Print the data
document.write(root.data + " ");
// Right Recursive Call
printInorder(root.right);
}
let pre = [ 1, 2, 4, 5, 3, 6, 7 ];
let N = pre.length;
// Function Call
let root = buildPerfectBT(pre, N);
// Print Inorder Traversal
document.write("Inorder traversal of the tree: ");
printInorder(root);
// This code is contributed by divyesh072019.
</script>
Output: Inorder traversal of the tree: 4 2 5 1 6 3 7
Time Complexity: O(N)
Auxiliary Space: O(N)
Similar Reads
Construct Full Binary Tree from given preorder and postorder traversals Given two arrays that represent preorder and postorder traversals of a full binary tree, construct the binary tree. Full Binary Tree is a binary tree where every node has either 0 or 2 children.Examples of Full Trees. Input: pre[] = [1, 2, 4, 8, 9, 5, 3, 6, 7] , post[] = [8, 9, 4, 5, 2, 6, 7, 3, 1]O
9 min read
Construct Tree from given Inorder and Preorder traversals Given in-order and pre-order traversals of a Binary Tree, the task is to construct the Binary Tree and return its root.Example:Input: inorder[] = [3, 1, 4, 0, 5, 2], preorder[] = [0, 1, 3, 4, 2, 5]Output: [0, 1, 2, 3, 4, 5]Explanation: The tree will look like: Table of Content[Naive Approach] Using
15+ min read
Construct the full k-ary tree from its preorder traversal Given an array that contains the preorder traversal of the full k-ary tree, the task is to construct the full k-ary tree and return its postorder traversal. A full k-ary tree is a tree where each node has either 0 or k children.Examples: Input: pre[] = {1, 2, 5, 6, 7, 3, 8, 9, 10, 4}, k = 3 Output:
6 min read
Construct Special Binary Tree from given Inorder traversal Given Inorder Traversal of a Special Binary Tree in which the key of every node is greater than keys in left and right children, construct the Binary Tree and return root. Examples: Input: inorder[] = {5, 10, 40, 30, 28} Output: root of following tree 40 / \ 10 30 / \ 5 28 Input: inorder[] = {1, 5,
14 min read
Construct a special tree from given preorder traversal Given an array pre[] that represents the Preorder traversal of a special binary tree where every node has either 0 or 2 children. One more array preLN[] is given which has only two possible values âLâ and âNâ. The value âLâ in preLN[] indicates that the corresponding node in Binary Tree is a leaf no
12 min read
Construct BST from Preorder Traversal Given the preorder traversal of a binary search tree, construct the BST.Examples:Input: {10, 5, 1, 7, 40, 50}Output: 10 / \ 5 40 / \ \ 1 7 50Explanation: The constructed tree is BST and if we do preorder traversal of it, we get the same arrayInput: {1, 2]Output: 1 \ 2Input: {2, 1]Output: 2 / 1 Table
15+ min read
Preorder Traversal of Binary Tree Preorder traversal is a tree traversal method that follows the Root-Left-Right order:The root node of the subtree is visited first.Next, the left subtree is recursively traversed.Finally, the right subtree is recursively traversed.How does Preorder Traversal work?Key Properties: Used in expression t
5 min read
Double Order Traversal of a Binary Tree Given a Binary Tree, the task is to find its Double Order Traversal. Double Order Traversal is a tree traversal technique in which every node is traversed twice in the following order: Visit the Node.Traverse the Left Subtree.Visit the Node.Traverse the Right Subtree.Examples:Input: Output: 1 7 4 4
6 min read
Mix Order Traversal of a Binary Tree Given a Binary Tree consisting of N nodes, the task is to print its Mix Order Traversal. Mix Order Traversal is a tree traversal technique, which involves any two of the existing traversal techniques like Inorder, Preorder and Postorder Traversal. Any two of them can be performed or alternate levels
13 min read
Find n-th node in Preorder traversal of a Binary Tree Given a binary tree. The task is to find the n-th node of preorder traversal.Examples: Input:Output: 50Explanation: Preorder Traversal is: 10 20 40 50 30 and value of 4th node is 50.Input:Output : 3Explanation: Preorder Traversal is: 7 2 3 8 5 and value of 3rd node is 3.Table of Content[Naive Approa
11 min read