Count of binary strings of given length consisting of at least one 1
Given an integer N, the task is to print the number of binary strings of length N which at least one '1'.
Examples:
Input: 2
Output: 3
Explanation:
"01", "10" and "11" are the possible stringsInput: 3
Output: 7
Explanation:
"001", "011", "010", "100", "101", "110" and "111" are the possible strings
Approach:
We can observe that:
Only one string of length N does not contain any 1, the one filled with only 0's.
Since 2N strings are possible of length N, the required answer is 2N - 1.
Follow the steps below to solve the problem:
- Initialize X = 1.
- Compute upto 2N by performing bitwise left shift on X, N-1 times.
- Finally, print X - 1 as the required answer.
Below is the implementation of our approach:
// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to return
// the count of strings
long count_strings(long n)
{
int x = 1;
// Calculate pow(2, n)
for (int i = 1; i < n; i++) {
x = (1 << x);
}
// Return pow(2, n) - 1
return x - 1;
}
// Driver Code
int main()
{
long n = 3;
cout << count_strings(n);
return 0;
}
// C++ Program to implement
// the above approach
using namespace std;
// Function to return
// the count of strings
long count_strings(long n)
{
int x = 1;
// Calculate pow(2, n)
for (int i = 1; i < n; i++) {
x = (1 << x);
}
// Return pow(2, n) - 1
return x - 1;
}
// Driver Code
int main()
{
long n = 3;
cout << count_strings(n);
return 0;
}
// Java program to implement
// the above approach
import java.util.*;
class GFG{
// Function to return
// the count of Strings
static long count_Strings(long n)
{
int x = 1;
// Calculate Math.pow(2, n)
for(int i = 1; i < n; i++)
{
x = (1 << x);
}
// Return Math.pow(2, n) - 1
return x - 1;
}
// Driver Code
public static void main(String[] args)
{
long n = 3;
System.out.print(count_Strings(n));
}
}
// This code is contributed by Amit Katiyar
# Python3 program to implement
# the above approach
# Function to return
# the count of Strings
def count_Strings(n):
x = 1;
# Calculate pow(2, n)
for i in range(1, n):
x = (1 << x);
# Return pow(2, n) - 1
return x - 1;
# Driver Code
if __name__ == '__main__':
n = 3;
print(count_Strings(n));
# This code is contributed by Princi Singh
// C# program to implement
// the above approach
using System;
class GFG{
// Function to return
// the count of Strings
static long count_Strings(long n)
{
int x = 1;
// Calculate Math.Pow(2, n)
for(int i = 1; i < n; i++)
{
x = (1 << x);
}
// Return Math.Pow(2, n) - 1
return x - 1;
}
// Driver Code
public static void Main(String[] args)
{
long n = 3;
Console.Write(count_Strings(n));
}
}
// This code is contributed by Amit Katiyar
<script>
// Javascript program to implement
// the above approach
// Function to return
// the count of Strings
function count_Strings(n)
{
var x = 1;
// Calculate Math.pow(2, n)
for (i = 1; i < n; i++) {
x = (1 << x);
}
// Return Math.pow(2, n) - 1
return x - 1;
}
// Driver Code
var n = 3;
document.write(count_Strings(n));
// This code is contributed by todaysgaurav
</script>
Output:
3
Time Complexity: O(N)
Auxiliary Space: O(1)