Data Analytics and its type
Last Updated :
02 Jan, 2025
Data analytics is an important field that involves the process of collecting, processing, and interpreting data to uncover insights and help in making decisions. Data analytics is the practice of examining raw data to identify trends, draw conclusions, and extract meaningful information. This involves various techniques and tools to process and transform data into valuable insights that can be used for decision-making.
In this article, we will learn about Data analytics, data which will help businesses and individuals that can help them to enhance and solve complex problems, Types of Data Analytics, Techniques , Tools , and the Importance of Data Analytics .
Data Analytics
What is Data Analytics?
In this new digital world, data is being generated in an enormous amount which opens new paradigms. As we have high computing power and a large amount of data we can use this data to help us make data-driven decision making. The main benefits of data-driven decisions are that they are made up by observing past trends which have resulted in beneficial results.
In short, we can say that data analytics is the process of manipulating data to extract useful trends and hidden patterns that can help us derive valuable insights to make business predictions.
Understanding Data Analytics
Data analytics encompasses a wide array of techniques for analyzing data to gain valuable insights that can enhance various aspects of operations. By scrutinizing information, businesses can uncover patterns and metrics that might otherwise go unnoticed, enabling them to optimize processes and improve overall efficiency.
For instance, in manufacturing, companies collect data on machine runtime, downtime, and work queues to analyze and improve workload planning, ensuring machines operate at optimal levels.
Beyond production optimization, data analytics is utilized in diverse sectors. Gaming firms utilize it to design reward systems that engage players effectively, while content providers leverage analytics to optimize content placement and presentation, ultimately driving user engagement.
Types of Data Analytics
There are four major types of data analytics:
- Predictive (forecasting)
- Descriptive (business intelligence and data mining)
- Prescriptive (optimization and simulation)
- Diagnostic analytics
Data Analytics and its Types Predictive Analytics
Predictive analytics turn the data into valuable, actionable information. predictive analytics uses data to determine the probable outcome of an event or a likelihood of a situation occurring. Predictive analytics holds a variety of statistical techniques from modeling, machine learning , data mining , and game theory that analyze current and historical facts to make predictions about a future event. Techniques that are used for predictive analytics are:
- Linear Regression
- Time Series Analysis and Forecasting
- Data Mining
Basic Cornerstones of Predictive Analytics
- Predictive modeling
- Decision Analysis and optimization
- Transaction profiling
Descriptive Analytics
Descriptive analytics looks at data and analyze past event for insight as to how to approach future events. It looks at past performance and understands the performance by mining historical data to understand the cause of success or failure in the past. Almost all management reporting such as sales, marketing, operations, and finance uses this type of analysis.
The descriptive model quantifies relationships in data in a way that is often used to classify customers or prospects into groups. Unlike a predictive model that focuses on predicting the behavior of a single customer, Descriptive analytics identifies many different relationships between customer and product.
Common examples of Descriptive analytics are company reports that provide historic reviews like:
- Data Queries
- Reports
- Descriptive Statistics
- Data dashboard
Prescriptive Analytics
Prescriptive Analytics automatically synthesize big data, mathematical science, business rule, and machine learning to make a prediction and then suggests a decision option to take advantage of the prediction.
Prescriptive analytics goes beyond predicting future outcomes by also suggesting action benefits from the predictions and showing the decision maker the implication of each decision option. Prescriptive Analytics not only anticipates what will happen and when to happen but also why it will happen. Further, Prescriptive Analytics can suggest decision options on how to take advantage of a future opportunity or mitigate a future risk and illustrate the implication of each decision option.
For example, Prescriptive Analytics can benefit healthcare strategic planning by using analytics to leverage operational and usage data combined with data of external factors such as economic data, population demography, etc.
Diagnostic Analytics
In this analysis, we generally use historical data over other data to answer any question or for the solution of any problem. We try to find any dependency and pattern in the historical data of the particular problem.
For example, companies go for this analysis because it gives a great insight into a problem, and they also keep detailed information about their disposal otherwise data collection may turn out individual for every problem and it will be very time-consuming. Common techniques used for Diagnostic Analytics are:
- Data discovery
- Data mining
- Correlations
The Role of Data Analytics
Data analytics plays a pivotal role in enhancing operations, efficiency, and performance across various industries by uncovering valuable patterns and insights. Implementing data analytics techniques can provide companies with a competitive advantage. The process typically involves four fundamental steps:
- Data Mining : This step involves gathering data and information from diverse sources and transforming them into a standardized format for subsequent analysis. Data mining can be a time-intensive process compared to other steps but is crucial for obtaining a comprehensive dataset.
- Data Management : Once collected, data needs to be stored, managed, and made accessible. Creating a database is essential for managing the vast amounts of information collected during the mining process. SQL (Structured Query Language) remains a widely used tool for database management, facilitating efficient querying and analysis of relational databases.
- Statistical Analysis : In this step, the gathered data is subjected to statistical analysis to identify trends and patterns. Statistical modeling is used to interpret the data and make predictions about future trends. Open-source programming languages like Python, as well as specialized tools like R, are commonly used for statistical analysis and graphical modeling.
- Data Presentation : The insights derived from data analytics need to be effectively communicated to stakeholders. This final step involves formatting the results in a manner that is accessible and understandable to various stakeholders, including decision-makers, analysts, and shareholders. Clear and concise data presentation is essential for driving informed decision-making and driving business growth.
Steps in Data Analysis
- Define Data Requirements : This involves determining how the data will be grouped or categorized. Data can be segmented based on various factors such as age, demographic, income, or gender, and can consist of numerical values or categorical data.
- Data Collection : Data is gathered from different sources, including computers, online platforms, cameras, environmental sensors, or through human personnel.
- Data Organization : Once collected, the data needs to be organized in a structured format to facilitate analysis. This could involve using spreadsheets or specialized software designed for managing and analyzing statistical data.
- Data Cleaning : Before analysis, the data undergoes a cleaning process to ensure accuracy and reliability. This involves identifying and removing any duplicate or erroneous entries, as well as addressing any missing or incomplete data. Cleaning the data helps to mitigate potential biases and errors that could affect the analysis results.
Usage of Data Analytics
There are some key domains and strategic planning techniques in which Data Analytics has played a vital role:
- Improved Decision-Making - If we have supporting data in favour of a decision, then we can implement them with even more success probability. For example, if a certain decision or plan has to lead to better outcomes then there will be no doubt in implementing them again.
- Better Customer Service - Churn modeling is the best example of this in which we try to predict or identify what leads to customer churn and change those things accordingly so, that the attrition of the customers is as low as possible which is a most important factor in any organization.
- Efficient Operations - Data Analytics can help us understand what is the demand of the situation and what should be done to get better results then we will be able to streamline our processes which in turn will lead to efficient operations.
- Effective Marketing - Market segmentation techniques have been implemented to target this important factor only in which we are supposed to find the marketing techniques which will help us increase our sales and leads to effective marketing strategies.
Future Scope of Data Analytics
- Retail : To study sales patterns, consumer behavior, and inventory management, data analytics can be applied in the retail sector. Data analytics can be used by retailers to make data-driven decisions regarding what products to stock, how to price them, and how to best organize their stores.
- Healthcare : Data analytics can be used to evaluate patient data, spot trends in patient health, and create individualized treatment regimens. Data analytics can be used by healthcare companies to enhance patient outcomes and lower healthcare expenditures.
- Finance : In the field of finance, data analytics can be used to evaluate investment data, spot trends in the financial markets, and make wise investment decisions. Data analytics can be used by financial institutions to lower risk and boost the performance of investment portfolios.
- Marketing : By analyzing customer data, spotting trends in consumer behavior, and creating customized marketing strategies, data analytics can be used in marketing. Data analytics can be used by marketers to boost the efficiency of their campaigns and their overall impact.
- Manufacturing : Data analytics can be used to examine production data, spot trends in production methods, and boost production efficiency in the manufacturing sector. Data analytics can be used by manufacturers to cut costs and enhance product quality.
- Transportation : To evaluate logistics data, spot trends in transportation routes, and improve transportation routes, the transportation sector can employ data analytics. Data analytics can help transportation businesses cut expenses and speed up delivery times.
Conclusion
Data Analytics act as tool that is used for both organizations and individuals that seems to use the power of data. As we progress in this data-driven age, data analytics will continue to play a pivotal role in shaping industries and influencing future.
Similar Reads
Data Analysis with Python In this article, we will discuss how to do data analysis with Python. We will discuss all sorts of data analysis i.e. analyzing numerical data with NumPy, Tabular data with Pandas, data visualization Matplotlib, and Exploratory data analysis.Data Analysis With Python Data Analysis is the technique o
15+ min read
Introduction to Data Analysis
Data Analysis Libraries
Data Visulization Libraries
Matplotlib TutorialMatplotlib is an open-source visualization library for the Python programming language, widely used for creating static, animated and interactive plots. It provides an object-oriented API for embedding plots into applications using general-purpose GUI toolkits like Tkinter, Qt, GTK and wxPython. It
5 min read
Python Seaborn TutorialSeaborn is a library mostly used for statistical plotting in Python. It is built on top of Matplotlib and provides beautiful default styles and color palettes to make statistical plots more attractive.In this tutorial, we will learn about Python Seaborn from basics to advance using a huge dataset of
15+ min read
Plotly tutorialPlotly library in Python is an open-source library that can be used for data visualization and understanding data simply and easily. Plotly supports various types of plots like line charts, scatter plots, histograms, box plots, etc. So you all must be wondering why Plotly is over other visualization
15+ min read
Introduction to Bokeh in PythonBokeh is a Python interactive data visualization. Unlike Matplotlib and Seaborn, Bokeh renders its plots using HTML and JavaScript. It targets modern web browsers for presentation providing elegant, concise construction of novel graphics with high-performance interactivity. Features of Bokeh: Some o
1 min read
Exploratory Data Analysis (EDA)
Univariate, Bivariate and Multivariate data and its analysisIn this article,we will be discussing univariate, bivariate, and multivariate data and their analysis. Univariate data: Univariate data refers to a type of data in which each observation or data point corresponds to a single variable. In other words, it involves the measurement or observation of a s
5 min read
Measures of Central Tendency in StatisticsCentral tendencies in statistics are numerical values that represent the middle or typical value of a dataset. Also known as averages, they provide a summary of the entire data, making it easier to understand the overall pattern or behavior. These values are useful because they capture the essence o
11 min read
Measures of Spread - Range, Variance, and Standard DeviationCollecting the data and representing it in form of tables, graphs, and other distributions is essential for us. But, it is also essential that we get a fair idea about how the data is distributed, how scattered it is, and what is the mean of the data. The measures of the mean are not enough to descr
8 min read
Interquartile Range and Quartile Deviation using NumPy and SciPyIn statistical analysis, understanding the spread or variability of a dataset is crucial for gaining insights into its distribution and characteristics. Two common measures used for quantifying this variability are the interquartile range (IQR) and quartile deviation. Quartiles Quartiles are a kind
5 min read
Anova FormulaANOVA Test, or Analysis of Variance, is a statistical method used to test the differences between the means of two or more groups. Developed by Ronald Fisher in the early 20th century, ANOVA helps determine whether there are any statistically significant differences between the means of three or mor
7 min read
Skewness of Statistical DataSkewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean. In simpler terms, it indicates whether the data is concentrated more on one side of the mean compared to the other side.Why is skewness important?Understanding the skewness of data
5 min read
How to Calculate Skewness and Kurtosis in Python?Skewness is a statistical term and it is a way to estimate or measure the shape of a distribution. Â It is an important statistical methodology that is used to estimate the asymmetrical behavior rather than computing frequency distribution. Skewness can be two types: Symmetrical: A distribution can b
3 min read
Difference Between Skewness and KurtosisWhat is Skewness? Skewness is an important statistical technique that helps to determine the asymmetrical behavior of the frequency distribution, or more precisely, the lack of symmetry of tails both left and right of the frequency curve. A distribution or dataset is symmetric if it looks the same t
4 min read
Histogram | Meaning, Example, Types and Steps to DrawWhat is Histogram?A histogram is a graphical representation of the frequency distribution of continuous series using rectangles. The x-axis of the graph represents the class interval, and the y-axis shows the various frequencies corresponding to different class intervals. A histogram is a two-dimens
5 min read
Interpretations of HistogramHistograms helps visualizing and comprehending the data distribution. The article aims to provide comprehensive overview of histogram and its interpretation. What is Histogram?Histograms are graphical representations of data distributions. They consist of bars, each representing the frequency or cou
7 min read
Box PlotBox Plot is a graphical method to visualize data distribution for gaining insights and making informed decisions. Box plot is a type of chart that depicts a group of numerical data through their quartiles. In this article, we are going to discuss components of a box plot, how to create a box plot, u
7 min read
Quantile Quantile plotsThe quantile-quantile( q-q plot) plot is a graphical method for determining if a dataset follows a certain probability distribution or whether two samples of data came from the same population or not. Q-Q plots are particularly useful for assessing whether a dataset is normally distributed or if it
8 min read
What is Univariate, Bivariate & Multivariate Analysis in Data Visualisation?Data Visualisation is a graphical representation of information and data. By using different visual elements such as charts, graphs, and maps data visualization tools provide us with an accessible way to find and understand hidden trends and patterns in data. In this article, we are going to see abo
3 min read
Using pandas crosstab to create a bar plotIn this article, we will discuss how to create a bar plot by using pandas crosstab in Python. First Lets us know more about the crosstab, It is a simple cross-tabulation of two or more variables. What is cross-tabulation? It is a simple cross-tabulation that help us to understand the relationship be
3 min read
Exploring Correlation in PythonThis article aims to give a better understanding of a very important technique of multivariate exploration. A correlation Matrix is basically a covariance matrix. Also known as the auto-covariance matrix, dispersion matrix, variance matrix, or variance-covariance matrix. It is a matrix in which the
4 min read
Covariance and CorrelationCovariance and correlation are the two key concepts in Statistics that help us analyze the relationship between two variables. Covariance measures how two variables change together, indicating whether they move in the same or opposite directions. Relationship between Independent and dependent variab
5 min read
Factor Analysis | Data AnalysisFactor analysis is a statistical method used to analyze the relationships among a set of observed variables by explaining the correlations or covariances between them in terms of a smaller number of unobserved variables called factors. Table of Content What is Factor Analysis?What does Factor mean i
13 min read
Data Mining - Cluster AnalysisData mining is the process of finding patterns, relationships and trends to gain useful insights from large datasets. It includes techniques like classification, regression, association rule mining and clustering. In this article, we will learn about clustering analysis in data mining.Understanding
6 min read
MANOVA Test in R ProgrammingMultivariate analysis of variance (MANOVA) is simply an ANOVA (Analysis of variance) with several dependent variables. It is a continuation of the ANOVA. In an ANOVA, we test for statistical differences on one continuous dependent variable by an independent grouping variable. The MANOVA continues th
4 min read
MANOVA Test in R ProgrammingMultivariate analysis of variance (MANOVA) is simply an ANOVA (Analysis of variance) with several dependent variables. It is a continuation of the ANOVA. In an ANOVA, we test for statistical differences on one continuous dependent variable by an independent grouping variable. The MANOVA continues th
4 min read
Python - Central Limit TheoremCentral Limit Theorem (CLT) is a foundational principle in statistics, and implementing it using Python can significantly enhance data analysis capabilities. Statistics is an important part of data science projects. We use statistical tools whenever we want to make any inference about the population
7 min read
Probability Distribution FunctionProbability Distribution refers to the function that gives the probability of all possible values of a random variable.It shows how the probabilities are assigned to the different possible values of the random variable.Common types of probability distributions Include: Binomial Distribution.Bernoull
8 min read
Probability Density Estimation & Maximum Likelihood EstimationProbability density and maximum likelihood estimation (MLE) are key ideas in statistics that help us make sense of data. Probability Density Function (PDF) tells us how likely different outcomes are for a continuous variable, while Maximum Likelihood Estimation helps us find the best-fitting model f
8 min read
Exponential Distribution in R Programming - dexp(), pexp(), qexp(), and rexp() FunctionsThe Exponential Distribution is a continuous probability distribution that models the time between independent events occurring at a constant average rate. It is widely used in fields like reliability analysis, queuing theory, and survival analysis. The exponential distribution is a special case of
5 min read
Binomial Distribution in Data ScienceBinomial Distribution is used to calculate the probability of a specific number of successes in a fixed number of independent trials where each trial results in one of two outcomes: success or failure. It is used in various fields such as quality control, election predictions and medical tests to ma
7 min read
Poisson Distribution | Definition, Formula, Table and ExamplesThe Poisson distribution is a discrete probability distribution that calculates the likelihood of a certain number of events happening in a fixed time or space, assuming the events occur independently and at a constant rate.It is characterized by a single parameter, λ (lambda), which represents the
11 min read
P-Value: Comprehensive Guide to Understand, Apply, and InterpretA p-value is a statistical metric used to assess a hypothesis by comparing it with observed data. This article delves into the concept of p-value, its calculation, interpretation, and significance. It also explores the factors that influence p-value and highlights its limitations. Table of Content W
12 min read
Z-Score in Statistics | Definition, Formula, Calculation and UsesZ-Score in statistics is a measurement of how many standard deviations away a data point is from the mean of a distribution. A z-score of 0 indicates that the data point's score is the same as the mean score. A positive z-score indicates that the data point is above average, while a negative z-score
15+ min read
How to Calculate Point Estimates in R?Point estimation is a technique used to find the estimate or approximate value of population parameters from a given data sample of the population. The point estimate is calculated for the following two measuring parameters:Measuring parameterPopulation ParameterPoint EstimateProportionÏp MeanμxÌ Th
3 min read
Confidence IntervalA Confidence Interval (CI) is a range of values that contains the true value of something we are trying to measure like the average height of students or average income of a population.Instead of saying: âThe average height is 165 cm.âWe can say: âWe are 95% confident the average height is between 1
7 min read
Chi-square test in Machine LearningChi-Square test helps us determine if there is a significant relationship between two categorical variables and the target variable. It is a non-parametric statistical test meaning it doesnât follow normal distribution. Example of Chi-square testThe Chi-square test compares the observed frequencies
7 min read
Hypothesis TestingHypothesis testing compares two opposite ideas about a group of people or things and uses data from a small part of that group (a sample) to decide which idea is more likely true. We collect and study the sample data to check if the claim is correct.Hypothesis TestingFor example, if a company says i
9 min read
Data Preprocessing
Data Transformation
Time Series Data Analysis
Data Mining - Time-Series, Symbolic and Biological Sequences DataData mining refers to extracting or mining knowledge from large amounts of data. In other words, Data mining is the science, art, and technology of discovering large and complex bodies of data in order to discover useful patterns. Theoreticians and practitioners are continually seeking improved tech
3 min read
Basic DateTime Operations in PythonPython has an in-built module named DateTime to deal with dates and times in numerous ways. In this article, we are going to see basic DateTime operations in Python. There are six main object classes with their respective components in the datetime module mentioned below: datetime.datedatetime.timed
12 min read
Time Series Analysis & Visualization in PythonTime series data consists of sequential data points recorded over time which is used in industries like finance, pharmaceuticals, social media and research. Analyzing and visualizing this data helps us to find trends and seasonal patterns for forecasting and decision-making. In this article, we will
6 min read
How to deal with missing values in a Timeseries in Python?It is common to come across missing values when working with real-world data. Time series data is different from traditional machine learning datasets because it is collected under varying conditions over time. As a result, different mechanisms can be responsible for missing records at different tim
9 min read
How to calculate MOVING AVERAGE in a Pandas DataFrame?Calculating the moving average in a Pandas DataFrame is used for smoothing time series data and identifying trends. The moving average, also known as the rolling mean, helps reduce noise and highlight significant patterns by averaging data points over a specific window. In Pandas, this can be achiev
7 min read
What is a trend in time series?Time series data is a sequence of data points that measure some variable over ordered period of time. It is the fastest-growing category of databases as it is widely used in a variety of industries to understand and forecast data patterns. So while preparing this time series data for modeling it's i
3 min read
How to Perform an Augmented Dickey-Fuller Test in RAugmented Dickey-Fuller Test: It is a common test in statistics and is used to check whether a given time series is at rest. A given time series can be called stationary or at rest if it doesn't have any trend and depicts a constant variance over time and follows autocorrelation structure over a per
3 min read
AutoCorrelationAutocorrelation is a fundamental concept in time series analysis. Autocorrelation is a statistical concept that assesses the degree of correlation between the values of variable at different time points. The article aims to discuss the fundamentals and working of Autocorrelation. Table of Content Wh
10 min read
Case Studies and Projects