Diameter of a Binary Tree using Top Down Recursion Last Updated : 24 Jan, 2025 Comments Improve Suggest changes Like Article Like Report Given a binary tree, the task is to determine the diameter of the tree. The diameter/width of a tree is defined as the number of edges on the longest path between any two nodes. Examples:Input: Output: 2Explanation: The longest path has 2 edges (node 2 -> node 1 -> node 3). Input: Output: 4Explanation: The longest path has 4 edges (node 3 -> node 8 -> node 5 -> node 6 -> node 9). Approach:The idea is to recursively traverse the tree using Preorder traversal. For each node, find the height of left subtree and right subtree and compare the diameter (sum of height of left subtree + height of right subtree) with the maximum diameter. C++ // C++ program to find the diameter // of a binary tree. #include <iostream> #include <algorithm> using namespace std; class Node { public: int data; Node *left, *right; Node(int x) { data = x; left = nullptr; right = nullptr; } }; // Function to compute the height of a tree. int height(Node* root) { // Base case: tree is empty if (root == nullptr) return 0; // If tree is not empty then height = 1 + // max of left height and right heights return 1 + max(height(root->left), height(root->right)); } // Function to get diameter of a binary tree int diameter(Node* root) { if (root == nullptr) return 0; // Get the height of left and right // sub-trees int lheight = height(root->left); int rheight = height(root->right); // Get the diameter of left and right // sub-trees int ldiameter = diameter(root->left); int rdiameter = diameter(root->right); // Return max of the following three: // 1) Diameter of left subtree // 2) Diameter of right subtree // 3) Height of left subtree + height of right subtree return max({lheight + rheight, ldiameter, rdiameter}); } int main() { // Constructed binary tree is // 5 // / \ // 8 6 // / \ / // 3 7 9 Node* root = new Node(5); root->left = new Node(8); root->right = new Node(6); root->left->left = new Node(3); root->left->right = new Node(7); root->right->left = new Node(9); cout << diameter(root) << endl; return 0; } C // C program to find the diameter // of a binary tree. #include <stdio.h> #include <stdlib.h> struct Node { int data; struct Node* left; struct Node* right; }; // Function to compute the height of a tree. int height(struct Node* root) { // Base case: tree is empty if (root == NULL) return 0; // If tree is not empty then height = 1 + // max of left height and right heights int leftHeight = height(root->left); int rightHeight = height(root->right); return 1 + (leftHeight > rightHeight ? leftHeight : rightHeight); } // Function to get diameter of a binary tree int diameter(struct Node* root) { if (root == NULL) return 0; // Get the height of left and right sub-trees int lheight = height(root->left); int rheight = height(root->right); // Get the diameter of left and right sub-trees int ldiameter = diameter(root->left); int rdiameter = diameter(root->right); // Diameter of current subtree int curr = lheight+rheight; // Return max of the following three: // 1) Diameter of left subtree // 2) Diameter of right subtree // 3) Height of left subtree + height of right subtree if (ldiameter > rdiameter && ldiameter > curr) return ldiameter; else if (rdiameter > ldiameter && rdiameter > curr) return rdiameter; return curr; } struct Node* createNode(int x) { struct Node* newNode = (struct Node*)malloc(sizeof(struct Node)); newNode->data = x; newNode->left = NULL; newNode->right = NULL; return newNode; } int main() { // Constructed binary tree is // 5 // / \ // 8 6 // / \ / // 3 7 9 struct Node* root = createNode(5); root->left = createNode(8); root->right = createNode(6); root->left->left = createNode(3); root->left->right = createNode(7); root->right->left = createNode(9); printf("%d\n", diameter(root)); return 0; } Java // Java program to find the diameter // of a binary tree. import java.util.ArrayList; class Node { int data; Node left, right; Node(int x) { data = x; left = null; right = null; } } class GfG { // Function to compute the height of a tree. static int height(Node root) { // Base case: tree is empty if (root == null) return 0; // If tree is not empty then height = 1 + // max of left height and right heights return 1 + Math.max(height(root.left), height(root.right)); } // Function to get diameter of a binary tree static int diameter(Node root) { if (root == null) return 0; // Get the height of left and right sub-trees int lheight = height(root.left); int rheight = height(root.right); // Get the diameter of left and right sub-trees int ldiameter = diameter(root.left); int rdiameter = diameter(root.right); // Return max of the following three: // 1) Diameter of left subtree // 2) Diameter of right subtree // 3) Height of left subtree + height // of right subtree return Math.max(lheight + rheight, Math.max(ldiameter, rdiameter)); } public static void main(String[] args) { // Constructed binary tree is // 5 // / \ // 8 6 // / \ / // 3 7 9 Node root = new Node(5); root.left = new Node(8); root.right = new Node(6); root.left.left = new Node(3); root.left.right = new Node(7); root.right.left = new Node(9); System.out.println(diameter(root)); } } Python # Python program to find the diameter # of a binary tree. class Node: def __init__(self, x): self.data = x self.left = None self.right = None # Function to compute the height # of a tree. def height(root): # Base case: tree is empty if root is None: return 0 # If tree is not empty then height = 1 + # max of left height and right heights return 1 + max(height(root.left), height(root.right)) # Function to get diameter of a binary tree def diameter(root): if root is None: return 0 # Get the height of left and # right sub-trees lheight = height(root.left) rheight = height(root.right) # Get the diameter of left and # right sub-trees ldiameter = diameter(root.left) rdiameter = diameter(root.right) # Return max of the following three: # 1) Diameter of left subtree # 2) Diameter of right subtree # 3) Height of left subtree + height of right subtree return max(lheight + rheight, ldiameter, rdiameter) if __name__ == "__main__": # Constructed binary tree is # 5 # / \ # 8 6 # / \ / # 3 7 9 root = Node(5) root.left = Node(8) root.right = Node(6) root.left.left = Node(3) root.left.right = Node(7) root.right.left = Node(9) print(diameter(root)) C# // C# program to find the diameter // of a binary tree. using System; using System.Collections.Generic; class Node { public int data; public Node left, right; public Node(int x) { data = x; left = null; right = null; } } class GfG { // Function to compute the // height of a tree. static int height(Node root) { // Base case: tree is empty if (root == null) return 0; // If tree is not empty then height = 1 + // max of left height and right heights return 1 + Math.Max(height(root.left), height(root.right)); } // Function to get diameter of // a binary tree static int diameter(Node root) { if (root == null) return 0; // Get the height of left and // right sub-trees int lheight = height(root.left); int rheight = height(root.right); // Get the diameter of left and right sub-trees int ldiameter = diameter(root.left); int rdiameter = diameter(root.right); // Return max of the following three: // 1) Diameter of left subtree // 2) Diameter of right subtree // 3) Height of left subtree + height of right subtree return Math.Max(lheight + rheight, Math.Max(ldiameter, rdiameter)); } static void Main(string[] args) { // Constructed binary tree is // 5 // / \ // 8 6 // / \ / // 3 7 9 Node root = new Node(5); root.left = new Node(8); root.right = new Node(6); root.left.left = new Node(3); root.left.right = new Node(7); root.right.left = new Node(9); Console.WriteLine(diameter(root)); } } JavaScript // JavaScript program to find the diameter // of a binary tree. class Node { constructor(x) { this.data = x; this.left = null; this.right = null; } } // Function to compute the height of a tree. function height(root) { // Base case: tree is empty if (root === null) return 0; // If tree is not empty then height = 1 + // max of left height and right heights return 1 + Math.max(height(root.left), height(root.right)); } // Function to get diameter of a binary tree function diameter(root) { if (root === null) return 0; // Get the height of left and right sub-trees const lheight = height(root.left); const rheight = height(root.right); // Get the diameter of left and right sub-trees const ldiameter = diameter(root.left); const rdiameter = diameter(root.right); // Return max of the following three: // 1) Diameter of left subtree // 2) Diameter of right subtree // 3) Height of left subtree + height of right subtree return Math.max(lheight + rheight, ldiameter, rdiameter); } // Driver Code // Constructed binary tree is // 5 // / \ // 8 6 // / \ / // 3 7 9 let root = new Node(5); root.left = new Node(8); root.right = new Node(6); root.left.left = new Node(3); root.left.right = new Node(7); root.right.left = new Node(9); console.log(diameter(root)); Output4 Time Complexity: O(n^2), where n is the number of nodes in tree.Auxiliary Space: O(h) due to recursive calls. Comment More infoAdvertise with us Next Article Diameter of a Binary Tree using Top Down Recursion P Pooja Kamal Improve Article Tags : Tree DSA Microsoft Amazon Oracle Directi VMWare Cadence India Snapdeal MakeMyTrip Salesforce OYO Philips +9 More Practice Tags : AmazonCadence IndiaDirectiMakeMyTripMicrosoftOraclePhilipsSalesforceSnapdealVMWareTree +7 More Similar Reads DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on 7 min read Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s 12 min read Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge 14 min read Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st 2 min read Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir 8 min read Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta 15+ min read Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc 15 min read Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T 9 min read Dijkstra's Algorithm to find Shortest Paths from a Source to all Given a weighted undirected graph represented as an edge list and a source vertex src, find the shortest path distances from the source vertex to all other vertices in the graph. The graph contains V vertices, numbered from 0 to V - 1.Note: The given graph does not contain any negative edge. Example 12 min read Selection Sort Selection Sort is a comparison-based sorting algorithm. It sorts an array by repeatedly selecting the smallest (or largest) element from the unsorted portion and swapping it with the first unsorted element. This process continues until the entire array is sorted.First we find the smallest element an 8 min read Like