Difference between Neural Network And Fuzzy Logic Last Updated : 17 Jul, 2020 Comments Improve Suggest changes 1 Likes Like Report Neural Network: Neural network is an information processing system that is inspired by the way biological nervous systems such as brain process information. A neural network is composed of a large number of interconnected processing elements known as neurons which are used to solve problems. A neural network is an attempt to make a computer model of the human brain and neural networks are parallel computing devices. The simple diagram of the neural network is as shown below: Fuzzy Logic: The term fuzzy represents the things which are not clear. In the real world many times we find a situation where we can’t determine whether the state is true or false, their fuzzy logic provides very valuable flexibility for reasoning. In this way, we can consider the inaccuracies and uncertainties of any situation. The simple diagram of fuzzy logic is as shown below: Difference between Neural Network And Fuzzy Logic Neural Network Fuzzy Logic This system can not easily modified. This system can easily modified. It trains itself by learning from data set Everything must be defined explicitly. It is complex than fuzzy logic. It is simpler than neural network. It helps to perform predictions. It helps to perform pattern recognition. Difficult to extract knowledge. Knowledge can easily extracted. It based on learning. It doesn't base on learning. Create Quiz Comment B bansal_rtk_ Follow 1 Improve B bansal_rtk_ Follow 1 Improve Article Tags : Machine Learning AI-ML-DS Neural Network Explore Machine Learning BasicsIntroduction to Machine Learning8 min readTypes of Machine Learning7 min readWhat is Machine Learning Pipeline?6 min readApplications of Machine Learning3 min readPython for Machine LearningMachine Learning with Python Tutorial5 min readNumPy Tutorial - Python Library3 min readPandas Tutorial4 min readData Preprocessing in Python4 min readEDA - Exploratory Data Analysis in Python6 min readFeature EngineeringWhat is Feature Engineering?5 min readIntroduction to Dimensionality Reduction4 min readFeature Selection Techniques in Machine Learning4 min readSupervised LearningSupervised Machine Learning7 min readLinear Regression in Machine learning14 min readLogistic Regression in Machine Learning10 min readDecision Tree in Machine Learning8 min readRandom Forest Algorithm in Machine Learning5 min readK-Nearest Neighbor(KNN) Algorithm8 min readSupport Vector Machine (SVM) Algorithm9 min readNaive Bayes Classifiers6 min readUnsupervised LearningWhat is Unsupervised Learning5 min readK means Clustering â Introduction6 min readHierarchical Clustering in Machine Learning6 min readDBSCAN Clustering in ML - Density based clustering6 min readApriori Algorithm6 min readFrequent Pattern Growth Algorithm5 min readECLAT Algorithm - ML5 min readPrincipal Component Analysis (PCA)7 min readModel Evaluation and TuningEvaluation Metrics in Machine Learning9 min readRegularization in Machine Learning5 min readCross Validation in Machine Learning5 min readHyperparameter Tuning5 min readUnderfitting and Overfitting in ML3 min readBias and Variance in Machine Learning6 min readAdvanced TechniquesReinforcement Learning9 min readSemi-Supervised Learning in ML5 min readSelf-Supervised Learning (SSL)6 min readEnsemble Learning8 min readMachine Learning PracticeMachine Learning Interview Questions and Answers15+ min read100+ Machine Learning Projects with Source Code5 min read Like