Check if it is possible to make array increasing or decreasing by rotating the array
Last Updated :
11 Nov, 2021
Given an array arr[] of N distinct elements, the task is to check if it is possible to make the array increasing or decreasing by rotating the array in any direction.
Examples:
Input: arr[] = {4, 5, 6, 2, 3}
Output: Yes
Array can be rotated as {2, 3, 4, 5, 6}
Input: arr[] = {1, 2, 4, 3, 5}
Output: No
Approach: There are four possibilities:
- If the array is already increasing then the answer is Yes.
- If the array is already decreasing then the answer is Yes.
- If the array can be made increasing, this can be possible if the given array is first increasing up to the maximum element and then decreasing.
- If the array can be made decreasing, this can be possible if the given array is first decreasing up to the minimum element and then increasing.
If it is not possible to make the array increasing or decreasing then print No.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
// Function that returns true if the array
// can be made increasing or decreasing
// after rotating it in any direction
bool isPossible(int a[], int n)
{
// If size of the array is less than 3
if (n <= 2)
return true;
int flag = 0;
// Check if the array is already decreasing
for (int i = 0; i < n - 2; i++) {
if (!(a[i] > a[i + 1] and a[i + 1] > a[i + 2])) {
flag = 1;
break;
}
}
// If the array is already decreasing
if (flag == 0)
return true;
flag = 0;
// Check if the array is already increasing
for (int i = 0; i < n - 2; i++) {
if (!(a[i] < a[i + 1] and a[i + 1] < a[i + 2])) {
flag = 1;
break;
}
}
// If the array is already increasing
if (flag == 0)
return true;
// Find the indices of the minimum
// and the maximum value
int val1 = INT_MAX, mini = -1, val2 = INT_MIN, maxi;
for (int i = 0; i < n; i++) {
if (a[i] < val1) {
mini = i;
val1 = a[i];
}
if (a[i] > val2) {
maxi = i;
val2 = a[i];
}
}
flag = 1;
// Check if we can make array increasing
for (int i = 0; i < maxi; i++) {
if (a[i] > a[i + 1]) {
flag = 0;
break;
}
}
// If the array is increasing upto max index
// and minimum element is right to maximum
if (flag == 1 and maxi + 1 == mini) {
flag = 1;
// Check if array increasing again or not
for (int i = mini; i < n - 1; i++) {
if (a[i] > a[i + 1]) {
flag = 0;
break;
}
}
if (flag == 1)
return true;
}
flag = 1;
// Check if we can make array decreasing
for (int i = 0; i < mini; i++) {
if (a[i] < a[i + 1]) {
flag = 0;
break;
}
}
// If the array is decreasing upto min index
// and minimum element is left to maximum
if (flag == 1 and maxi - 1 == mini) {
flag = 1;
// Check if array decreasing again or not
for (int i = maxi; i < n - 1; i++) {
if (a[i] < a[i + 1]) {
flag = 0;
break;
}
}
if (flag == 1)
return true;
}
// If it is not possible to make the
// array increasing or decreasing
return false;
}
// Driver code
int main()
{
int a[] = { 4, 5, 6, 2, 3 };
int n = sizeof(a) / sizeof(a[0]);
if (isPossible(a, n))
cout << "Yes";
else
cout << "No";
return 0;
}
Java
// Java implementation of the approach
class GFG
{
// Function that returns true if the array
// can be made increasing or decreasing
// after rotating it in any direction
static boolean isPossible(int a[], int n)
{
// If size of the array is less than 3
if (n <= 2)
return true;
int flag = 0;
// Check if the array is already decreasing
for (int i = 0; i < n - 2; i++)
{
if (!(a[i] > a[i + 1] &&
a[i + 1] > a[i + 2]))
{
flag = 1;
break;
}
}
// If the array is already decreasing
if (flag == 0)
return true;
flag = 0;
// Check if the array is already increasing
for (int i = 0; i < n - 2; i++)
{
if (!(a[i] < a[i + 1] &&
a[i + 1] < a[i + 2]))
{
flag = 1;
break;
}
}
// If the array is already increasing
if (flag == 0)
return true;
// Find the indices of the minimum
// && the maximum value
int val1 = Integer.MAX_VALUE, mini = -1,
val2 = Integer.MIN_VALUE, maxi = 0;
for (int i = 0; i < n; i++)
{
if (a[i] < val1)
{
mini = i;
val1 = a[i];
}
if (a[i] > val2)
{
maxi = i;
val2 = a[i];
}
}
flag = 1;
// Check if we can make array increasing
for (int i = 0; i < maxi; i++)
{
if (a[i] > a[i + 1])
{
flag = 0;
break;
}
}
// If the array is increasing upto max index
// && minimum element is right to maximum
if (flag == 1 && maxi + 1 == mini)
{
flag = 1;
// Check if array increasing again or not
for (int i = mini; i < n - 1; i++)
{
if (a[i] > a[i + 1])
{
flag = 0;
break;
}
}
if (flag == 1)
return true;
}
flag = 1;
// Check if we can make array decreasing
for (int i = 0; i < mini; i++)
{
if (a[i] < a[i + 1])
{
flag = 0;
break;
}
}
// If the array is decreasing upto min index
// && minimum element is left to maximum
if (flag == 1 && maxi - 1 == mini)
{
flag = 1;
// Check if array decreasing again or not
for (int i = maxi; i < n - 1; i++)
{
if (a[i] < a[i + 1])
{
flag = 0;
break;
}
}
if (flag == 1)
return true;
}
// If it is not possible to make the
// array increasing or decreasing
return false;
}
// Driver code
public static void main(String args[])
{
int a[] = { 4, 5, 6, 2, 3 };
int n = a.length;
if (isPossible(a, n))
System.out.println( "Yes");
else
System.out.println( "No");
}
}
// This code is contributed by Arnab Kundu
Python3
# Python3 implementation of the approach
import sys
# Function that returns True if the array
# can be made increasing or decreasing
# after rotating it in any direction
def isPossible(a, n):
# If size of the array is less than 3
if (n <= 2):
return True;
flag = 0;
# Check if the array is already decreasing
for i in range(n - 2):
if (not(a[i] > a[i + 1] and
a[i + 1] > a[i + 2])):
flag = 1;
break;
# If the array is already decreasing
if (flag == 0):
return True;
flag = 0;
# Check if the array is already increasing
for i in range(n - 2):
if (not(a[i] < a[i + 1] and
a[i + 1] < a[i + 2])):
flag = 1;
break;
# If the array is already increasing
if (flag == 0):
return True;
# Find the indices of the minimum
# and the maximum value
val1 = sys.maxsize; mini = -1;
val2 = -sys.maxsize; maxi = -1;
for i in range(n):
if (a[i] < val1):
mini = i;
val1 = a[i];
if (a[i] > val2):
maxi = i;
val2 = a[i];
flag = 1;
# Check if we can make array increasing
for i in range(maxi):
if (a[i] > a[i + 1]):
flag = 0;
break;
# If the array is increasing upto max index
# and minimum element is right to maximum
if (flag == 1 and maxi + 1 == mini):
flag = 1;
# Check if array increasing again or not
for i in range(mini, n - 1):
if (a[i] > a[i + 1]):
flag = 0;
break;
if (flag == 1):
return True;
flag = 1;
# Check if we can make array decreasing
for i in range(mini):
if (a[i] < a[i + 1]):
flag = 0;
break;
# If the array is decreasing upto min index
# and minimum element is left to maximum
if (flag == 1 and maxi - 1 == mini):
flag = 1;
# Check if array decreasing again or not
for i in range(maxi, n - 1):
if (a[i] < a[i + 1]):
flag = 0;
break;
if (flag == 1):
return True;
# If it is not possible to make the
# array increasing or decreasing
return False;
# Driver code
a = [ 4, 5, 6, 2, 3 ];
n = len(a);
if (isPossible(a, n)):
print("Yes");
else:
print("No");
# This code is contributed by Rajput-Ji
C#
// C# implementation of the approach
using System;
class GFG
{
// Function that returns true if the array
// can be made increasing or decreasing
// after rotating it in any direction
static bool isPossible(int []a, int n)
{
// If size of the array is less than 3
if (n <= 2)
return true;
int flag = 0;
// Check if the array is already decreasing
for (int i = 0; i < n - 2; i++)
{
if (!(a[i] > a[i + 1] &&
a[i + 1] > a[i + 2]))
{
flag = 1;
break;
}
}
// If the array is already decreasing
if (flag == 0)
return true;
flag = 0;
// Check if the array is already increasing
for (int i = 0; i < n - 2; i++)
{
if (!(a[i] < a[i + 1] &&
a[i + 1] < a[i + 2]))
{
flag = 1;
break;
}
}
// If the array is already increasing
if (flag == 0)
return true;
// Find the indices of the minimum
// && the maximum value
int val1 = int.MaxValue, mini = -1,
val2 = int.MinValue, maxi = 0;
for (int i = 0; i < n; i++)
{
if (a[i] < val1)
{
mini = i;
val1 = a[i];
}
if (a[i] > val2)
{
maxi = i;
val2 = a[i];
}
}
flag = 1;
// Check if we can make array increasing
for (int i = 0; i < maxi; i++)
{
if (a[i] > a[i + 1])
{
flag = 0;
break;
}
}
// If the array is increasing upto max index
// && minimum element is right to maximum
if (flag == 1 && maxi + 1 == mini)
{
flag = 1;
// Check if array increasing again or not
for (int i = mini; i < n - 1; i++)
{
if (a[i] > a[i + 1])
{
flag = 0;
break;
}
}
if (flag == 1)
return true;
}
flag = 1;
// Check if we can make array decreasing
for (int i = 0; i < mini; i++)
{
if (a[i] < a[i + 1])
{
flag = 0;
break;
}
}
// If the array is decreasing upto min index
// && minimum element is left to maximum
if (flag == 1 && maxi - 1 == mini)
{
flag = 1;
// Check if array decreasing again or not
for (int i = maxi; i < n - 1; i++)
{
if (a[i] < a[i + 1])
{
flag = 0;
break;
}
}
if (flag == 1)
return true;
}
// If it is not possible to make the
// array increasing or decreasing
return false;
}
// Driver code
public static void Main()
{
int []a = { 4, 5, 6, 2, 3 };
int n = a.Length;
if (isPossible(a, n))
Console.WriteLine( "Yes");
else
Console.WriteLine( "No");
}
}
// This code is contributed by AnkitRai01
JavaScript
<script>
// javascript implementation of the approach
// Function that returns true if the array
// can be made increasing or decreasing
// after rotating it in any direction
function isPossible(a , n) {
// If size of the array is less than 3
if (n <= 2)
return true;
var flag = 0;
// Check if the array is already decreasing
for (i = 0; i < n - 2; i++) {
if (!(a[i] > a[i + 1] && a[i + 1] > a[i + 2])) {
flag = 1;
break;
}
}
// If the array is already decreasing
if (flag == 0)
return true;
flag = 0;
// Check if the array is already increasing
for (i = 0; i < n - 2; i++) {
if (!(a[i] < a[i + 1] && a[i + 1] < a[i + 2])) {
flag = 1;
break;
}
}
// If the array is already increasing
if (flag == 0)
return true;
// Find the indices of the minimum
// && the maximum value
var val1 = Number.MAX_VALUE, mini = -1, val2 = Number.MIN_VALUE, maxi = 0;
for (i = 0; i < n; i++) {
if (a[i] < val1) {
mini = i;
val1 = a[i];
}
if (a[i] > val2) {
maxi = i;
val2 = a[i];
}
}
flag = 1;
// Check if we can make array increasing
for (i = 0; i < maxi; i++) {
if (a[i] > a[i + 1]) {
flag = 0;
break;
}
}
// If the array is increasing upto max index
// && minimum element is right to maximum
if (flag == 1 && maxi + 1 == mini) {
flag = 1;
// Check if array increasing again or not
for (i = mini; i < n - 1; i++) {
if (a[i] > a[i + 1]) {
flag = 0;
break;
}
}
if (flag == 1)
return true;
}
flag = 1;
// Check if we can make array decreasing
for (i = 0; i < mini; i++) {
if (a[i] < a[i + 1]) {
flag = 0;
break;
}
}
// If the array is decreasing upto min index
// && minimum element is left to maximum
if (flag == 1 && maxi - 1 == mini) {
flag = 1;
// Check if array decreasing again or not
for (i = maxi; i < n - 1; i++) {
if (a[i] < a[i + 1]) {
flag = 0;
break;
}
}
if (flag == 1)
return true;
}
// If it is not possible to make the
// array increasing or decreasing
return false;
}
// Driver code
var a = [ 4, 5, 6, 2, 3 ];
var n = a.length;
if (isPossible(a, n))
document.write("Yes");
else
document.write("No");
// This code contributed by umadevi9616
</script>
Time Complexity: O(N)
Auxiliary Space: O(1)
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Array Data Structure Guide In this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
4 min read
Sorting Algorithms A Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read