Count maximum points on same line
Given n point on a 2D plane as pair of (x, y) co-ordinates, we need to find maximum number of point which lie on the same line.
Examples:
Input : points[] = {-1, 1}, {0, 0}, {1, 1},
{2, 2}, {3, 3}, {3, 4}
Output : 4
Then maximum number of point which lie on same
line are 4, those point are {0, 0}, {1, 1}, {2, 2},
{3, 3}
For each point p, calculate its slope with other points and use a map to record how many points have same slope, by which we can find out how many points are on same line with p as their one point. For each point keep doing the same thing and update the maximum number of point count found so far.
Some things to note in implementation are:
- if two point are (x1, y1) and (x2, y2) then their slope will be (y2 – y1) / (x2 – x1) which can be a double value and can cause precision problems. To get rid of the precision problems, we treat slope as pair ((y2 - y1), (x2 – x1)) instead of ratio and reduce pair by their gcd before inserting into map. In below code points which are vertical or repeated are treated separately.
- If we use Hash Map or Dictionary for storing the slope pair, then total time complexity of solution will be O(n^2) and space complexity will be O(n).
/* C/C++ program to find maximum number of point
which lie on same line */
#include <bits/stdc++.h>
#include <boost/functional/hash.hpp>
using namespace std;
// method to find maximum collinear point
int maxPointOnSameLine(vector< pair<int, int> > points)
{
int N = points.size();
if (N < 2)
return N;
int maxPoint = 0;
int curMax, overlapPoints, verticalPoints;
// here since we are using unordered_map
// which is based on hash function
//But by default we don't have hash function for pairs
//so we'll use hash function defined in Boost library
unordered_map<pair<int, int>, int,boost::
hash<pair<int, int> > > slopeMap;
// looping for each point
for (int i = 0; i < N; i++)
{
curMax = overlapPoints = verticalPoints = 0;
// looping from i + 1 to ignore same pair again
for (int j = i + 1; j < N; j++)
{
// If both point are equal then just
// increase overlapPoint count
if (points[i] == points[j])
overlapPoints++;
// If x co-ordinate is same, then both
// point are vertical to each other
else if (points[i].first == points[j].first)
verticalPoints++;
else
{
int yDif = points[j].second - points[i].second;
int xDif = points[j].first - points[i].first;
int g = __gcd(xDif, yDif);
// reducing the difference by their gcd
yDif /= g;
xDif /= g;
// increasing the frequency of current slope
// in map
slopeMap[make_pair(yDif, xDif)]++;
curMax = max(curMax, slopeMap[make_pair(yDif, xDif)]);
}
curMax = max(curMax, verticalPoints);
}
// updating global maximum by current point's maximum
maxPoint = max(maxPoint, curMax + overlapPoints + 1);
// printf("maximum collinear point
// which contains current point
// are : %d\n", curMax + overlapPoints + 1);
slopeMap.clear();
}
return maxPoint;
}
// Driver code
int main()
{
const int N = 6;
int arr[N][2] = {{-1, 1}, {0, 0}, {1, 1}, {2, 2},
{3, 3}, {3, 4}};
vector< pair<int, int> > points;
for (int i = 0; i < N; i++)
points.push_back(make_pair(arr[i][0], arr[i][1]));
cout << maxPointOnSameLine(points) << endl;
return 0;
}
/* Java program to find maximum number of point
which lie on same line */
import java.util.*;
class GFG {
static int gcd(int p, int q)
{
if (q == 0) {
return p;
}
int r = p % q;
return gcd(q, r);
}
static int N = 6;
// method to find maximum collinear point
static int maxPointOnSameLine(int[][] points)
{
if (N < 2)
return N;
int maxPoint = 0;
int curMax, overlapPoints, verticalPoints;
HashMap<String, Integer> slopeMap = new HashMap<>();
// looping for each point
for (int i = 0; i < N; i++) {
curMax = overlapPoints = verticalPoints = 0;
// looping from i + 1 to ignore same pair again
for (int j = i + 1; j < N; j++) {
// If both point are equal then just
// increase overlapPoint count
if (points[i][0] == points[j][0]
&& points[i][1] == points[j][1])
overlapPoints++;
// If x co-ordinate is same, then both
// point are vertical to each other
else if (points[i][0] == points[j][0])
verticalPoints++;
else {
int yDif = points[j][1] - points[i][1];
int xDif = points[j][0] - points[i][0];
int g = gcd(xDif, yDif);
// reducing the difference by their gcd
yDif /= g;
xDif /= g;
// Convert the pair into a string to use
// as dictionary key
String pair = (yDif) + " " + (xDif);
if (!slopeMap.containsKey(pair))
slopeMap.put(pair, 0);
// increasing the frequency of current
// slope in map
slopeMap.put(pair,
slopeMap.get(pair) + 1);
curMax = Math.max(curMax,
slopeMap.get(pair));
}
curMax = Math.max(curMax, verticalPoints);
}
// updating global maximum by current point's
// maximum
maxPoint = Math.max(maxPoint,
curMax + overlapPoints + 1);
slopeMap.clear();
}
return maxPoint;
}
public static void main(String[] args)
{
int points[][] = { { -1, 1 }, { 0, 0 }, { 1, 1 },
{ 2, 2 }, { 3, 3 }, { 3, 4 } };
System.out.println(maxPointOnSameLine(points));
}
}
# python3 program to find maximum number of 2D points that lie on the same line.
from collections import defaultdict
from math import gcd
from typing import DefaultDict, List, Tuple
IntPair = Tuple[int, int]
def normalized_slope(a: IntPair, b: IntPair) -> IntPair:
"""
Returns normalized (rise, run) tuple. We won't return the actual rise/run
result in order to avoid floating point math, which leads to faulty
comparisons.
See
https://en.wikipedia.org/wiki/Floating-point_arithmetic#Accuracy_problems
"""
run = b[0] - a[0]
# normalize undefined slopes to (1, 0)
if run == 0:
return (1, 0)
# normalize to left-to-right
if run < 0:
a, b = b, a
run = b[0] - a[0]
rise = b[1] - a[1]
# Normalize by greatest common divisor.
# math.gcd only works on positive numbers.
gcd_ = gcd(abs(rise), run)
return (
rise // gcd_,
run // gcd_,
)
def maximum_points_on_same_line(points: List[List[int]]) -> int:
# You need at least 3 points to potentially have non-collinear points.
# For [0, 2] points, all points are on the same line.
if len(points) < 3:
return len(points)
# Note that every line we find will have at least 2 points.
# There will be at least one line because len(points) >= 3.
# Therefore, it's safe to initialize to 0.
max_val = 0
for a_index in range(0, len(points) - 1):
# All lines in this iteration go through point a.
# Note that lines a-b and a-c cannot be parallel.
# Therefore, if lines a-b and a-c have the same slope, they're the same
# line.
a = tuple(points[a_index])
# Fresh lines already have a, so default=1
slope_counts: DefaultDict[IntPair, int] = defaultdict(lambda: 1)
for b_index in range(a_index + 1, len(points)):
b = tuple(points[b_index])
slope_counts[normalized_slope(a, b)] += 1
max_val = max(
max_val,
max(slope_counts.values()),
)
return max_val
print(maximum_points_on_same_line([
[-1, 1],
[0, 0],
[1, 1],
[2, 2],
[3, 3],
[3, 4],
]))
# This code is contributed by Jose Alvarado Torre
/* C# program to find maximum number of point
which lie on same line */
using System;
using System.Collections.Generic;
class GFG {
static int gcd(int p, int q)
{
if (q == 0) {
return p;
}
int r = p % q;
return gcd(q, r);
}
static int N = 6;
// method to find maximum collinear point
static int maxPointOnSameLine(int[, ] points)
{
if (N < 2)
return N;
int maxPoint = 0;
int curMax, overlapPoints, verticalPoints;
Dictionary<string, int> slopeMap
= new Dictionary<string, int>();
// looping for each point
for (int i = 0; i < N; i++) {
curMax = overlapPoints = verticalPoints = 0;
// looping from i + 1 to ignore same pair again
for (int j = i + 1; j < N; j++) {
// If both point are equal then just
// increase overlapPoint count
if (points[i, 0] == points[j, 0]
&& points[i, 1] == points[j, 1])
overlapPoints++;
// If x co-ordinate is same, then both
// point are vertical to each other
else if (points[i, 0] == points[j, 0])
verticalPoints++;
else {
int yDif = points[j, 1] - points[i, 1];
int xDif = points[j, 0] - points[i, 0];
int g = gcd(xDif, yDif);
// reducing the difference by their gcd
yDif /= g;
xDif /= g;
// Convert the pair into a string to use
// as dictionary key
string pair = Convert.ToString(yDif)
+ " "
+ Convert.ToString(xDif);
if (!slopeMap.ContainsKey(pair))
slopeMap[pair] = 0;
// increasing the frequency of current
// slope in map
slopeMap[pair]++;
curMax
= Math.Max(curMax, slopeMap[pair]);
}
curMax = Math.Max(curMax, verticalPoints);
}
// updating global maximum by current point's
// maximum
maxPoint = Math.Max(maxPoint,
curMax + overlapPoints + 1);
slopeMap.Clear();
}
return maxPoint;
}
// Driver code
public static void Main(string[] args)
{
int[, ] points = { { -1, 1 }, { 0, 0 }, { 1, 1 },
{ 2, 2 }, { 3, 3 }, { 3, 4 } };
Console.WriteLine(maxPointOnSameLine(points));
}
}
// This code is contributed by phasing17
/* JavaScript program to find maximum number of point
which lie on same line */
// Function to find gcd of two numbers
let gcd = function(a, b) {
if (!b) {
return a;
}
return gcd(b, a % b);
}
// method to find maximum collinear point
function maxPointOnSameLine(points){
let N = points.length;
if (N < 2){
return N;
}
let maxPoint = 0;
let curMax, overlapPoints, verticalPoints;
// Creating a map for storing the data.
let slopeMap = new Map();
// looping for each point
for (let i = 0; i < N; i++)
{
curMax = 0;
overlapPoints = 0;
verticalPoints = 0;
// looping from i + 1 to ignore same pair again
for (let j = i + 1; j < N; j++)
{
// If both point are equal then just
// increase overlapPoint count
if (points[i] === points[j]){
overlapPoints++;
}
// If x co-ordinate is same, then both
// point are vertical to each other
else if (points[i][0] === points[j][0]){
verticalPoints++;
}
else{
let yDif = points[j][1] - points[i][1];
let xDif = points[j][0] - points[i][0];
let g = gcd(xDif, yDif);
// reducing the difference by their gcd
yDif = Math.floor(yDif/g);
xDif = Math.floor(xDif/g);
// increasing the frequency of current slope.
let tmp = [yDif, xDif];
if(slopeMap.has(tmp.join(''))){
slopeMap.set(tmp.join(''), slopeMap.get(tmp.join('')) + 1);
}
else{
slopeMap.set(tmp.join(''), 1);
}
curMax = Math.max(curMax, slopeMap.get(tmp.join('')));
}
curMax = Math.max(curMax, verticalPoints);
}
// updating global maximum by current point's maximum
maxPoint = Math.max(maxPoint, curMax + overlapPoints + 1);
// printf("maximum collinear point
// which contains current point
// are : %d\n", curMax + overlapPoints + 1);
slopeMap.clear();
}
return maxPoint;
}
// Driver code
{
let N = 6;
let arr = [[-1, 1], [0, 0], [1, 1], [2, 2],
[3, 3], [3, 4]];
console.log(maxPointOnSameLine(arr));
}
// The code is contributed by Gautam goel (gautamgoel962)
Output
4
Time Complexity: O(n2logn), where n denoting length of string.
Auxiliary Space: O(n)