A number p greater than one is prime if and only if the only divisors of p are 1 and p. First few prime numbers are 2, 3, 5, 7, 11, 13, ...
The Lucas test is a primality test for a natural number n, it can test primality of any kind of number.
It follows from Fermat’s Little Theorem: If p is prime and a is an integer, then a^p is congruent to a (mod p )
Lucas’ Test : A positive number n
is prime if there exists an integer a (1 < a < n) such that :
a^{{n-1}}\ \equiv \ 1{\pmod n}
And for every prime factor q of (n-1),
a^{{({n-1})/q}}\ \not \equiv \ 1{\pmod n}
Examples :
Input : n = 7
Output : 7 is Prime
Explanation : let's take a = 3,
then 3^6 % 7 = 729 % 7 = 1 (1st
condition satisfied). Prime factors
of 6 are 2 and 3,
3^(6/2) % 7 = 3^3 % 7 = 27 % 7 = 6
3^(6/3) % 7 = 3^2 % 7 = 9 % 7 = 2
Hence, 7 is Prime
Input : n = 9
Output : 9 is composite
Explanation : Let's take a = 2,
then 2^8 % 9 = 256 % 9 = 4
Hence 9 is composite
lucasTest(n):
If n is even
return composite
Else
Find all prime factors of n-1
for i=2 to n-1
pick 'a' randomly in range [2, n-1]
if a^(n-1) % n not equal 1:
return composite
else
// for all q, prime factors of (n-1)
if a^(n-1)/q % n not equal 1
return prime
Return probably prime
Problems Associated with Lucas's test are :
- Knowing all of the prime factors of n-1
- Finding an appropriate choice for a
C++
// C++ Program for Lucas Primality Test
#include <bits/stdc++.h>
using namespace std;
// function to generate prime factors of n
void primeFactors(int n, vector<int>& factors)
{
// if 2 is a factor
if (n % 2 == 0)
factors.push_back(2);
while (n % 2 == 0)
n = n / 2;
// if prime > 2 is factor
for (int i = 3; i <= sqrt(n); i += 2) {
if (n % i == 0)
factors.push_back(i);
while (n % i == 0)
n = n / i;
}
if (n > 2)
factors.push_back(n);
}
// this function produces power modulo
// some number. It can be optimized to
// using
int power(int n, int r, int q)
{
int total = n;
for (int i = 1; i < r; i++)
total = (total * n) % q;
return total;
}
string lucasTest(int n)
{
// Base cases
if (n == 1)
return "neither prime nor composite";
if (n == 2)
return "prime";
if (n % 2 == 0)
return "composite1";
// Generating and storing factors
// of n-1
vector<int> factors;
primeFactors(n - 1, factors);
// Array for random generator. This array
// is to ensure one number is generated
// only once
int random[n - 3];
for (int i = 0; i < n - 2; i++)
random[i] = i + 2;
// shuffle random array to produce randomness
shuffle(random, random + n - 3,
default_random_engine(time(0)));
// Now one by one perform Lucas Primality
// Test on random numbers generated.
for (int i = 0; i < n - 2; i++) {
int a = random[i];
if (power(a, n - 1, n) != 1)
return "composite";
// this is to check if every factor
// of n-1 satisfy the condition
bool flag = true;
for (int k = 0; k < factors.size(); k++) {
// if a^((n-1)/q) equal 1
if (power(a, (n - 1) / factors[k], n) == 1) {
flag = false;
break;
}
}
// if all condition satisfy
if (flag)
return "prime";
}
return "probably composite";
}
// Driver code
int main()
{
cout << 7 << " is " << lucasTest(7) << endl;
cout << 9 << " is " << lucasTest(9) << endl;
cout << 37 << " is " << lucasTest(37) << endl;
return 0;
}
Java
// Java Program for Lucas Primality Test
import java.util.*;
class GFG {
static ArrayList<Integer> factors
= new ArrayList<Integer>();
// function to generate prime factors of n
static ArrayList<Integer> primeFactors(int n)
{
// if 2 is a factor
if (n % 2 == 0)
factors.add(2);
while (n % 2 == 0)
n = n / 2;
// if prime > 2 is factor
for (int i = 3; i <= Math.sqrt(n); i += 2) {
if (n % i == 0)
factors.add(i);
while (n % i == 0)
n = n / i;
}
if (n > 2)
factors.add(n);
return factors;
}
// this function produces power modulo
// some number. It can be optimized to
// using
static int power(int n, int r, int q)
{
int total = n;
for (int i = 1; i < r; i++)
total = (total * n) % q;
return total;
}
static String lucasTest(int n)
{
// Base cases
if (n == 1)
return "neither prime nor composite";
if (n == 2)
return "prime";
if (n % 2 == 0)
return "composite1";
// Generating and storing factors
// of n-1
primeFactors(n - 1);
// Array for random generator. This array
// is to ensure one number is generated
// only once
int[] random = new int[n - 2];
for (int i = 0; i < n - 2; i++)
random[i] = i + 2;
// shuffle random array to produce randomness
Collections.shuffle(Arrays.asList(random));
// Now one by one perform Lucas Primality
// Test on random numbers generated.
for (int i = 0; i < n - 2; i++) {
int a = random[i];
if (power(a, n - 1, n) != 1)
return "composite";
// this is to check if every factor
// of n-1 satisfy the condition
boolean flag = true;
for (i = 0; i < factors.size(); i++) {
// if a^((n-1)/q) equal 1
if (power(a, (n - 1) / factors.get(i), n) == 1) {
flag = false;
break;
}
}
// if all condition satisfy
if (flag)
return "prime";
}
return "probably composite";
}
// Driver code
public static void main(String[] args)
{
System.out.println(7 + " is " + lucasTest(7));
System.out.println(9 + " is " + lucasTest(9));
System.out.println(37 + " is " + lucasTest(37));
}
}
// This code is contributed by phasing17
Python3
# Python3 program for Lucas Primality Test
import random
import math
# Function to generate prime factors of n
def primeFactors(n, factors):
# If 2 is a factor
if (n % 2 == 0):
factors.append(2)
while (n % 2 == 0):
n = n // 2
# If prime > 2 is factor
for i in range(3, int(math.sqrt(n)) + 1, 2):
if (n % i == 0):
factors.append(i)
while (n % i == 0):
n = n // i
if (n > 2):
factors.append(n)
return factors
# This function produces power modulo
# some number. It can be optimized to
# using
def power(n, r, q):
total = n
for i in range(1, r):
total = (total * n) % q
return total
def lucasTest(n):
# Base cases
if (n == 1):
return "neither prime nor composite"
if (n == 2):
return "prime"
if (n % 2 == 0):
return "composite1"
# Generating and storing factors
# of n-1
factors = []
factors = primeFactors(n - 1, factors)
# Array for random generator. This array
# is to ensure one number is generated
# only once
rand = [i + 2 for i in range(n - 3)]
# Shuffle random array to produce randomness
random.shuffle(rand)
# Now one by one perform Lucas Primality
# Test on random numbers generated.
for i in range(n - 2):
a = rand[i]
if (power(a, n - 1, n) != 1):
return "composite"
# This is to check if every factor
# of n-1 satisfy the condition
flag = True
for k in range(len(factors)):
# If a^((n-1)/q) equal 1
if (power(a, (n - 1) // factors[k], n) == 1):
flag = False
break
# If all condition satisfy
if (flag):
return "prime"
return "probably composite"
# Driver code
if __name__=="__main__":
print(str(7) + " is " + lucasTest(7))
print(str(9) + " is " + lucasTest(9))
print(str(37) + " is " + lucasTest(37))
# This code is contributed by rutvik_56
C#
// C# Program for Lucas Primality Test
using System;
using System.Linq;
using System.Collections.Generic;
class GFG
{
static List<int> factors = new List<int>();
// function to generate prime factors of n
static List<int> primeFactors(int n)
{
// if 2 is a factor
if (n % 2 == 0)
factors.Add(2);
while (n % 2 == 0)
n = n / 2;
// if prime > 2 is factor
for (int i = 3; i <= Math.Sqrt(n); i += 2) {
if (n % i == 0)
factors.Add(i);
while (n % i == 0)
n = n / i;
}
if (n > 2)
factors.Add(n);
return factors;
}
// this function produces power modulo
// some number. It can be optimized to
// using
static int power(int n, int r, int q)
{
int total = n;
for (int i = 1; i < r; i++)
total = (total * n) % q;
return total;
}
static string lucasTest(int n)
{
// Base cases
if (n == 1)
return "neither prime nor composite";
if (n == 2)
return "prime";
if (n % 2 == 0)
return "composite1";
// Generating and storing factors
// of n-1
primeFactors(n - 1);
// Array for random generator. This array
// is to ensure one number is generated
// only once
int[] random = new int[n - 2];
for (int i = 0; i < n - 2; i++)
random[i] = i + 2;
// shuffle random array to produce randomness
Random rand = new Random();
random = random.OrderBy(x => rand.Next()).ToArray();
// Now one by one perform Lucas Primality
// Test on random numbers generated.
for (int i = 0; i < n - 2; i++) {
int a = random[i];
if (power(a, n - 1, n) != 1)
return "composite";
// this is to check if every factor
// of n-1 satisfy the condition
bool flag = true;
foreach (var factor in factors) {
// if a^((n-1)/q) equal 1
if (power(a, (n - 1) / factor, n) == 1) {
flag = false;
break;
}
}
// if all condition satisfy
if (flag)
return "prime";
}
return "probably composite";
}
// Driver code
public static void Main(string[] args)
{
Console.WriteLine(7 + " is " + lucasTest(7));
Console.WriteLine(9 + " is " + lucasTest(9));
Console.WriteLine(37 + " is " + lucasTest(37));
}
}
// This code is contributed by phasing17
JavaScript
// JavaScript Program for Lucas Primality Test
// A function to shuffle the array.
function shuffle(arr){
for(let i = arr.length-1; i>0;i--){
// have a random index from [0, arr.length-1]
let j = Math.floor(Math.random() * (i+1));
// swap the original and random index element
let temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
return arr;
}
// function to generate prime factors of n
function primeFactors(n, factors) {
// if 2 is a factor
if (n % 2 == 0){
factors.push(2);
}
while (n % 2 == 0){
n = n / 2;
}
// if prime > 2 is factor
for (let i = 3; i <= Math.sqrt(n); i += 2) {
if (n % i == 0){
factors.push(i);
}
while (n % i == 0){
n = n / i;
}
}
if (n > 2){
factors.push(n);
}
}
// this function produces power modulo
// some number. It can be optimized to
// using
function power(n, r, q) {
let total = n;
for (let i = 1; i < r; i++){
total = (total * n) % q;
}
return total;
}
function lucasTest(n) {
// Base cases
if (n == 1){
return "neither prime nor composite";
}
if (n == 2){
return "prime";
}
if (n % 2 == 0){
return "composite1";
}
// Generating and storing factors
// of n-1
const factors = [];
primeFactors(n - 1, factors);
// Array for random generator. This array
// is to ensure one number is generated
// only once
const random = [];
for (let i = 0; i < n - 2; i++){
// random[i] = i + 2;
random.push(i+2);
}
// shuffle random array to produce randomness
shuffle(random);
// Now one by one perform Lucas Primality
// Test on random numbers generated.
for (let i = 0; i < n - 2; i++) {
let a = random[i];
if (power(a, n - 1, n) != 1){
return "composite";
}
// this is to check if every factor
// of n-1 satisfy the condition
let flag = true;
for (let k = 0; k < factors.length; k++) {
// if a^((n-1)/q) equal 1
if (power(a, (n - 1) / factors[k], n) == 1) {
flag = false;
break;
}
}
// if all condition satisfy
if (flag){
return "prime";
}
}
return "probably composite";
}
// Driver code
{
console.log( 7 + " is " + lucasTest(7));
console.log( 9 + " is " + lucasTest(9));
console.log( 37 + " is " + lucasTest(37));
return 0;
}
// The code is contributed by Gautam goel (gautamgoel962)
JavaScript
Output:
7 is prime
9 is composite
37 is prime
Time Complexity: O(nlogn)
Auxiliary Space: O(n)
This method is quite complicated and inefficient as compared to other primality tests. And the main problems are factors of ‘n-1’ and choosing appropriate ‘a’.
Other Primality tests:
Similar Reads
Check for Prime Number Given a number n, check whether it is a prime number or not.Note: A prime number is a number greater than 1 that has no positive divisors other than 1 and itself.Input: n = 7Output: trueExplanation: 7 is a prime number because it is greater than 1 and has no divisors other than 1 and itself.Input: n
11 min read
Primality Test Algorithms
Introduction to Primality Test and School MethodGiven a positive integer, check if the number is prime or not. A prime is a natural number greater than 1 that has no positive divisors other than 1 and itself. Examples of the first few prime numbers are {2, 3, 5, ...}Examples : Input: n = 11Output: trueInput: n = 15Output: falseInput: n = 1Output:
10 min read
Fermat Method of Primality TestGiven a number n, check if it is prime or not. We have introduced and discussed the School method for primality testing in Set 1.Introduction to Primality Test and School MethodIn this post, Fermat's method is discussed. This method is a probabilistic method and is based on Fermat's Little Theorem.
10 min read
Primality Test | Set 3 (MillerâRabin)Given a number n, check if it is prime or not. We have introduced and discussed School and Fermat methods for primality testing.Primality Test | Set 1 (Introduction and School Method) Primality Test | Set 2 (Fermat Method)In this post, the Miller-Rabin method is discussed. This method is a probabili
15+ min read
Solovay-Strassen method of Primality TestWe have already been introduced to primality testing in the previous articles in this series. Introduction to Primality Test and School MethodFermat Method of Primality TestPrimality Test | Set 3 (MillerâRabin)The SolovayâStrassen test is a probabilistic algorithm used to check if a number is prime
13 min read
Lucas Primality TestA number p greater than one is prime if and only if the only divisors of p are 1 and p. First few prime numbers are 2, 3, 5, 7, 11, 13, ...The Lucas test is a primality test for a natural number n, it can test primality of any kind of number.It follows from Fermatâs Little Theorem: If p is prime and
12 min read
Sieve of Eratosthenes Given a number n, print all primes smaller than or equal to n. It is also given that n is a small number. Examples:Input: n = 10Output: 2 3 5 7Explanation: The prime numbers up to 10 obtained by Sieve of Eratosthenes are 2 3 5 7 .Input: n = 20Output: 2 3 5 7 11 13 17 19Explanation: The prime numbers
6 min read
How is the time complexity of Sieve of Eratosthenes is n*log(log(n))? Pre-requisite: Sieve of Eratosthenes What is Sieve of Eratosthenes algorithm? In order to analyze it, let's take a number n and the task is to print the prime numbers less than n. Therefore, by definition of Sieve of Eratosthenes, for every prime number, it has to check the multiples of the prime an
3 min read
Sieve of Eratosthenes in 0(n) time complexity The classical Sieve of Eratosthenes algorithm takes O(N log (log N)) time to find all prime numbers less than N. In this article, a modified Sieve is discussed that works in O(N) time.Example : Given a number N, print all prime numbers smaller than N Input : int N = 15 Output : 2 3 5 7 11 13 Input :
12 min read
Programs and Problems based on Sieve of Eratosthenes
C++ Program for Sieve of EratosthenesGiven a number n, print all primes smaller than or equal to n. It is also given that n is a small number. For example, if n is 10, the output should be "2, 3, 5, 7". If n is 20, the output should be "2, 3, 5, 7, 11, 13, 17, 19".CPP// C++ program to print all primes smaller than or equal to // n usin
2 min read
Java Program for Sieve of EratosthenesGiven a number n, print all primes smaller than or equal to n. It is also given that n is a small number. For example, if n is 10, the output should be "2, 3, 5, 7". If n is 20, the output should be "2, 3, 5, 7, 11, 13, 17, 19". Java // Java program to print all primes smaller than or equal to // n
2 min read
Scala | Sieve of EratosthenesEratosthenes of Cyrene was a Greek mathematician, who discovered an amazing algorithm to find prime numbers. This article performs this algorithm in Scala. Step 1 : Creating an Int Stream Scala 1== def numberStream(n: Int): Stream[Int] = Stream.from(n) println(numberStream(10)) Output of above step
4 min read
Check if a number is Primorial Prime or notGiven a positive number N, the task is to check if N is a primorial prime number or not. Print 'YES' if N is a primorial prime number otherwise print 'NO.Primorial Prime: In Mathematics, A Primorial prime is a prime number of the form pn# + 1 or pn# - 1 , where pn# is the primorial of pn i.e the pro
10 min read
Sum of all Primes in a given range using Sieve of EratosthenesGiven a range [l, r], the task is to find the sum of all the prime numbers in the given range from l to r both inclusive.Examples: Input : l = 10, r = 20Output : 60Explanation: Prime numbers between [10, 20] are: 11, 13, 17, 19Therefore, sum = 11 + 13 + 17 + 19 = 60Input : l = 15, r = 25Output : 59E
1 min read
Prime Factorization using Sieve O(log n) for multiple queriesWe can calculate the prime factorization of a number "n" in O(sqrt(n)) as discussed here. But O(sqrt n) method times out when we need to answer multiple queries regarding prime factorization.In this article, we study an efficient method to calculate the prime factorization using O(n) space and O(log
11 min read
Java Program to Implement Sieve of Eratosthenes to Generate Prime Numbers Between Given RangeA number which is divisible by 1 and itself or a number which has factors as 1 and the number itself is called a prime number. The sieve of Eratosthenes is one of the most efficient ways to find all primes smaller than n when n is smaller than 10 million or so. Example: Input : from = 1, to = 20 Out
3 min read
Segmented Sieve Given a number n, print all primes smaller than n. Input: N = 10Output: 2, 3, 5, 7Explanation : The output â2, 3, 5, 7â for input N = 10 represents the list of the prime numbers less than or equal to 10. Input: N = 5Output: 2, 3, 5 Explanation : The output â2, 3, 5â for input N = 5 represents the li
15+ min read
Segmented Sieve (Print Primes in a Range) Given a range [low, high], print all primes in this range? For example, if the given range is [10, 20], then output is 11, 13, 17, 19. A Naive approach is to run a loop from low to high and check each number for primeness. A Better Approach is to precalculate primes up to the maximum limit using Sie
15 min read
Longest sub-array of Prime Numbers using Segmented Sieve Given an array arr[] of N integers, the task is to find the longest subarray where all numbers in that subarray are prime. Examples: Input: arr[] = {3, 5, 2, 66, 7, 11, 8} Output: 3 Explanation: Maximum contiguous prime number sequence is {2, 3, 5} Input: arr[] = {1, 2, 11, 32, 8, 9} Output: 2 Expla
13 min read
Sieve of Sundaram to print all primes smaller than n Given a number n, print all primes smaller than or equal to n.Examples: Input: n = 10Output: 2, 3, 5, 7Input: n = 20Output: 2, 3, 5, 7, 11, 13, 17, 19We have discussed Sieve of Eratosthenes algorithm for the above task. Below is Sieve of Sundaram algorithm.printPrimes(n)[Prints all prime numbers sma
10 min read