Smallest number k such that the product of digits of k is equal to n
Last Updated :
28 Mar, 2023
Given a non-negative number n. The problem is to find the smallest number k such that the product of digits of k is equal to n. If no such number k can be formed then print "-1".
Examples:
Input : 100
Output : 455
Explanation: 4*5*5 = 100 and 455 is the
smallest possible number.
Input : 26
Output : -1
Source: Asked in Amazon Interview
Approach: For each i = 9 to 2, repeatedly divide n by i until it cannot be further divided or the list of numbers from 9 to 2 gets finished. Also, in the process of division push each digit i onto the stack which divides n completely. After the above process gets completed check whether n == 1 or not. If not, then print "-1", else form the number k using the digits from the stack containing the digits in the same sequence as popped from the stack.
C++
// C++ implementation to find smallest number k such that
// the product of digits of k is equal to n
#include <bits/stdc++.h>
using namespace std;
// function to find smallest number k such that
// the product of digits of k is equal to n
long long int smallestNumber(int n)
{
// if 'n' is a single digit number, then
// it is the required number
if (n >= 0 && n <= 9)
return n;
// stack the store the digits
stack<int> digits;
// repeatedly divide 'n' by the numbers
// from 9 to 2 until all the numbers are
// used or 'n' > 1
for (int i=9; i>=2 && n > 1; i--)
{
while (n % i == 0)
{
// save the digit 'i' that divides 'n'
// onto the stack
digits.push(i);
n = n / i;
}
}
// if true, then no number 'k' can be formed
if (n != 1)
return -1;
// pop digits from the stack 'digits'
// and add them to 'k'
long long int k = 0;
while (!digits.empty())
{
k = k*10 + digits.top();
digits.pop();
}
// required smallest number
return k;
}
// Driver program to test above
int main()
{
int n = 100;
cout << smallestNumber(n);
return 0;
}
Java
//Java implementation to find smallest number k such that
// the product of digits of k is equal to n
import java.util.Stack;
public class GFG {
// function to find smallest number k such that
// the product of digits of k is equal to n
static long smallestNumber(int n) {
// if 'n' is a single digit number, then
// it is the required number
if (n >= 0 && n <= 9) {
return n;
}
// stack the store the digits
Stack<Integer> digits = new Stack<>();
// repeatedly divide 'n' by the numbers
// from 9 to 2 until all the numbers are
// used or 'n' > 1
for (int i = 9; i >= 2 && n > 1; i--) {
while (n % i == 0) {
// save the digit 'i' that divides 'n'
// onto the stack
digits.push(i);
n = n / i;
}
}
// if true, then no number 'k' can be formed
if (n != 1) {
return -1;
}
// pop digits from the stack 'digits'
// and add them to 'k'
long k = 0;
while (!digits.empty()) {
k = k * 10 + digits.peek();
digits.pop();
}
// required smallest number
return k;
}
// Driver program to test above
static public void main(String[] args) {
int n = 100;
System.out.println(smallestNumber(n));
}
}
/*This code is contributed by PrinciRaj1992*/
Python3
# Python3 implementation to find smallest
# number k such that the product of digits
# of k is equal to n
import math as mt
# function to find smallest number k such that
# the product of digits of k is equal to n
def smallestNumber(n):
# if 'n' is a single digit number, then
# it is the required number
if (n >= 0 and n <= 9):
return n
# stack the store the digits
digits = list()
# repeatedly divide 'n' by the numbers
# from 9 to 2 until all the numbers are
# used or 'n' > 1
for i in range(9,1, -1):
while (n % i == 0):
# save the digit 'i' that
# divides 'n' onto the stack
digits.append(i)
n = n //i
# if true, then no number 'k'
# can be formed
if (n != 1):
return -1
# pop digits from the stack 'digits'
# and add them to 'k'
k = 0
while (len(digits) != 0):
k = k * 10 + digits[-1]
digits.pop()
# required smallest number
return k
# Driver Code
n = 100
print(smallestNumber(n))
# This code is contributed by
# Mohit kumar 29
C#
// C# implementation to find smallest number k such that
// the product of digits of k is equal to n
using System;
using System.Collections.Generic;
public class GFG {
// function to find smallest number k such that
// the product of digits of k is equal to n
static long smallestNumber(int n) {
// if 'n' is a single digit number, then
// it is the required number
if (n >= 0 && n <= 9) {
return n;
}
// stack the store the digits
Stack<int> digits = new Stack<int>();
// repeatedly divide 'n' by the numbers
// from 9 to 2 until all the numbers are
// used or 'n' > 1
for (int i = 9; i >= 2 && n > 1; i--) {
while (n % i == 0) {
// save the digit 'i' that divides 'n'
// onto the stack
digits.Push(i);
n = n / i;
}
}
// if true, then no number 'k' can be formed
if (n != 1) {
return -1;
}
// pop digits from the stack 'digits'
// and add them to 'k'
long k = 0;
while (digits.Count!=0) {
k = k * 10 + digits.Peek();
digits.Pop();
}
// required smallest number
return k;
}
// Driver program to test above
static public void Main() {
int n = 100;
Console.Write(smallestNumber(n));
}
}
/*This code is contributed by Rajput-Ji*/
PHP
<?php
// PHP implementation to find smallest number k such that
// the product of digits of k is equal to n
// function to find smallest number k such that
// the product of digits of k is equal to n
function smallestNumber($n)
{
// if 'n' is a single digit number, then
// it is the required number
if ($n >= 0 && $n <= 9)
return $n;
// stack the store the digits
$digits = array();
// repeatedly divide 'n' by the numbers
// from 9 to 2 until all the numbers are
// used or 'n' > 1
for ($i = 9; $i >= 2 && $n > 1; $i--)
{
while ($n % $i == 0)
{
// save the digit 'i' that divides 'n'
// onto the stack
array_push($digits,$i);
$n =(int)( $n / $i);
}
}
// if true, then no number 'k' can be formed
if ($n != 1)
return -1;
// pop digits from the stack 'digits'
// and add them to 'k'
$k = 0;
while (!empty($digits))
$k = $k * 10 + array_pop($digits);
// required smallest number
return $k;
}
// Driver code
$n = 100;
echo smallestNumber($n);
// This code is contributed by mits
?>
JavaScript
<script>
// Javascript implementation to find
// smallest number k such that
// the product of digits of k is equal to n
// function to find smallest number k such that
// the product of digits of k is equal to n
function smallestNumber(n)
{
// if 'n' is a single digit number, then
// it is the required number
if (n >= 0 && n <= 9) {
return n;
}
// stack the store the digits
let digits = [];
// repeatedly divide 'n' by the numbers
// from 9 to 2 until all the numbers are
// used or 'n' > 1
for (let i = 9; i >= 2 && n > 1; i--) {
while (n % i == 0) {
// save the digit 'i' that divides 'n'
// onto the stack
digits.push(i);
n = Math.floor(n / i);
}
}
// if true, then no number 'k' can be formed
if (n != 1) {
return -1;
}
// pop digits from the stack 'digits'
// and add them to 'k'
let k = 0;
while (digits.length!=0) {
k = k * 10 + digits[digits.length-1];
digits.pop();
}
// required smallest number
return k;
}
// Driver program to test above
let n = 100;
document.write(smallestNumber(n));
// This code is contributed by patel2127
</script>
Time Complexity: O(log N)
Space Complexity: O(log N)
We can store the required number k in string for large numbers as shown below.
Also, the above approach can be space optimized if we store our answer directly in a string and return the reverse of it as the final answer.
C++
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
string getSmallest(ll N) {
string ans;
for(int i=9;i>=2 && N>1;i--)
{
while(N%i==0)
{
ans.push_back(i+48);
N/=i;
}
}
if(N!=1)
return "-1";
else if(ans.length()==0)
return "1";
reverse(ans.begin(),ans.end());
return ans;
}
// driver's code
int main()
{
ll N=100;
cout<<getSmallest(N);
return 0;
}
// this code is contributed by prophet1999
Java
import java.util.*;
public class Main {
public static String getSmallest(long N) {
String ans = "";
for (int i = 9; i >= 2 && N > 1; i--) {
while (N % i == 0) {
ans += (char)(i + '0');
N /= i;
}
}
if (N != 1) {
return "-1";
} else if (ans.length() == 0) {
return "1";
}
return new StringBuilder(ans).reverse().toString();
}
public static void main(String[] args) {
long N = 100;
System.out.println(getSmallest(N));
}
}
Python3
def getSmallest(N):
ans = ""
for i in range(9, 1, -1):
while N > 1 and N % i == 0:
ans += str(i)
N //= i
if N != 1:
return "-1"
elif len(ans) == 0:
return "1"
return ans[::-1]
# driver's code
if __name__ == '__main__':
N = 100
print(getSmallest(N))
C#
using System;
public class Program
{
static string GetSmallest(int N)
{
string ans = "";
for (int i = 9; i > 1; i--)
{
while (N > 1 && N % i == 0)
{
ans += i.ToString();
N /= i;
}
}
if (N != 1)
{
return "-1";
}
else if (ans.Length == 0)
{
return "1";
}
char[] charArray = ans.ToCharArray();
Array.Reverse(charArray);
return new string(charArray);
}
// driver's code
public static void Main()
{
int N = 100;
Console.WriteLine(GetSmallest(N));
}
}
// this code is contributed by shivhack999
JavaScript
function getSmallest(N) {
let ans = "";
for (let i = 9; i > 1; i--) {
while (N > 1 && N % i === 0) {
ans += i.toString();
N /= i;
}
}
if (N !== 1) {
return "-1";
} else if (ans.length === 0) {
return "1";
}
return ans.split("").reverse().join("");
}
// driver's code
const N = 100;
console.log(getSmallest(N));
Time Complexity: O(log N)
Auxiliary Space: O(1)
Explore
DSA Fundamentals
Data Structures
Algorithms
Advanced
Interview Preparation
Practice Problem