// C++ program to for Knight's tour problem using
// Warnsdorff's algorithm
#include <bits/stdc++.h>
#define N 8
// Move pattern on basis of the change of
// x coordinates and y coordinates respectively
static int cx[N] = {1,1,2,2,-1,-1,-2,-2};
static int cy[N] = {2,-2,1,-1,2,-2,1,-1};
// function restricts the knight to remain within
// the 8x8 chessboard
bool limits(int x, int y)
{
return ((x >= 0 && y >= 0) && (x < N && y < N));
}
/* Checks whether a square is valid and empty or not */
bool isempty(int a[], int x, int y)
{
return (limits(x, y)) && (a[y*N+x] < 0);
}
/* Returns the number of empty squares adjacent
to (x, y) */
int getDegree(int a[], int x, int y)
{
int count = 0;
for (int i = 0; i < N; ++i)
if (isempty(a, (x + cx[i]), (y + cy[i])))
count++;
return count;
}
// Picks next point using Warnsdorff's heuristic.
// Returns false if it is not possible to pick
// next point.
bool nextMove(int a[], int *x, int *y)
{
int min_deg_idx = -1, c, min_deg = (N+1), nx, ny;
// Try all N adjacent of (*x, *y) starting
// from a random adjacent. Find the adjacent
// with minimum degree.
int start = rand()%N;
for (int count = 0; count < N; ++count)
{
int i = (start + count)%N;
nx = *x + cx[i];
ny = *y + cy[i];
if ((isempty(a, nx, ny)) &&
(c = getDegree(a, nx, ny)) < min_deg)
{
min_deg_idx = i;
min_deg = c;
}
}
// IF we could not find a next cell
if (min_deg_idx == -1)
return false;
// Store coordinates of next point
nx = *x + cx[min_deg_idx];
ny = *y + cy[min_deg_idx];
// Mark next move
a[ny*N + nx] = a[(*y)*N + (*x)]+1;
// Update next point
*x = nx;
*y = ny;
return true;
}
/* displays the chessboard with all the
legal knight's moves */
void print(int a[])
{
for (int i = 0; i < N; ++i)
{
for (int j = 0; j < N; ++j)
printf("%d\t",a[j*N+i]);
printf("\n");
}
}
/* checks its neighbouring squares */
/* If the knight ends on a square that is one
knight's move from the beginning square,
then tour is closed */
bool neighbour(int x, int y, int xx, int yy)
{
for (int i = 0; i < N; ++i)
if (((x+cx[i]) == xx)&&((y + cy[i]) == yy))
return true;
return false;
}
/* Generates the legal moves using warnsdorff's
heuristics. Returns false if not possible */
bool findClosedTour()
{
// Filling up the chessboard matrix with -1's
int a[N*N];
for (int i = 0; i< N*N; ++i)
a[i] = -1;
// Random initial position
int sx = rand()%N;
int sy = rand()%N;
// Current points are same as initial points
int x = sx, y = sy;
a[y*N+x] = 1; // Mark first move.
// Keep picking next points using
// Warnsdorff's heuristic
for (int i = 0; i < N*N-1; ++i)
if (nextMove(a, &x, &y) == 0)
return false;
// Check if tour is closed (Can end
// at starting point)
if (!neighbour(x, y, sx, sy))
return false;
print(a);
return true;
}
// Driver code
int main()
{
// To make sure that different random
// initial positions are picked.
srand(time(NULL));
// While we don't get a solution
while (!findClosedTour())
{
;
}
return 0;
}