model = Sequential()
model.add(Conv2D(filters=64, kernel_size=(5, 5), padding='same',
activation='relu', input_shape=(224, 224, 3)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(filters=64, kernel_size=(3, 3),
padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(filters=64, kernel_size=(3, 3),
padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(filters=64, kernel_size=(3, 3),
padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dense(5, activation="softmax"))
model.summary()