Introduction to Primality Test and School Method
Last Updated :
13 Feb, 2025
Given a positive integer, check if the number is prime or not. A prime is a natural number greater than 1 that has no positive divisors other than 1 and itself. Examples of the first few prime numbers are {2, 3, 5, ...}
Examples :
Input: n = 11
Output: true
Input: n = 15
Output: false
Input: n = 1
Output: false
School Method
A simple solution is to iterate through all numbers from 2 to n-1 and for every number check if it divides n. If we find any number that divides, we return false.
C++
// A school method based C++ program to check if a
// number is prime
#include <bits/stdc++.h>
using namespace std;
bool isPrime(int n)
{
// Corner case
if (n <= 1)
return false;
// Check from 2 to n-1
for (int i = 2; i < n; i++)
if (n % i == 0)
return false;
return true;
}
// Driver Program to test above function
int main()
{
isPrime(11) ? cout << " true\n" : cout << " false\n";
isPrime(15) ? cout << " true\n" : cout << " false\n";
return 0;
}
Java
// A school method based JAVA program
// to check if a number is prime
class GFG {
static boolean isPrime(int n)
{
// Corner case
if (n <= 1)
return false;
// Check from 2 to n-1
for (int i = 2; i < n; i++)
if (n % i == 0)
return false;
return true;
}
// Driver Program
public static void main(String args[])
{
if (isPrime(11))
System.out.println(" true");
else
System.out.println(" false");
if (isPrime(15))
System.out.println(" true");
else
System.out.println(" false");
}
}
Python
# A school method based Python3
# program to check if a number
# is prime
def isPrime(n):
# Corner case
if n <= 1:
return False
# Check from 2 to n-1
for i in range(2, n):
if n % i == 0:
return False
return True
# Driver Program to test above function
print("true") if isPrime(11) else print("false")
print("true") if isPrime(14) else print("false")
C#
// A optimized school method based C#
// program to check if a number is prime
using System;
namespace prime {
public class GFG {
public static bool isprime(int n)
{
// Corner cases
if (n <= 1)
return false;
for (int i = 2; i < n; i++)
if (n % i == 0)
return false;
return true;
}
// Driver program
public static void Main()
{
if (isprime(11))
Console.WriteLine("true");
else
Console.WriteLine("false");
if (isprime(15))
Console.WriteLine("true");
else
Console.WriteLine("false");
}
}
}
JavaScript
<script>
// A school method based Javascript program to check if a
// number is prime
function isPrime(n)
{
// Corner case
if (n <= 1) return false;
// Check from 2 to n-1
for (let i = 2; i < n; i++)
if (n % i == 0)
return false;
return true;
}
// Driver Program to test above function
isPrime(11)? document.write(" true" + "<br>"): document.write(" false" + "<br>");
isPrime(15)? document.write(" true" + "<br>"): document.write(" false" + "<br>");
</script>
PHP
<?php
// A school method based PHP
// program to check if a number
// is prime
function isPrime($n)
{
// Corner case
if ($n <= 1) return false;
// Check from 2 to n-1
for ($i = 2; $i < $n; $i++)
if ($n % $i == 0)
return false;
return true;
}
// Driver Code
$tet = isPrime(11) ? " true\n" :
" false\n";
echo $tet;
$tet = isPrime(15) ? " true\n" :
" false\n";
echo $tet;
?>
Time complexity: O(n)
Auxiliary Space: O(1)
Optimized School Method
We can do the following optimizations: Instead of checking till n, we can check till √n because a larger factor of n must be a multiple of a smaller factor that has been already checked. The implementation of this method is as follows:
C++
// Optimised school method based C++ program to check if a
// number is prime
#include <bits/stdc++.h>
using namespace std;
bool isPrime(int n)
{
// Corner case
if (n <= 1)
return false;
// Check from 2 to square root of n
for (int i = 2; i <= sqrt(n); i++)
if (n % i == 0)
return false;
return true;
}
// Driver Program to test above function
int main()
{
isPrime(11) ? cout << " true\n" : cout << " false\n";
isPrime(15) ? cout << " true\n" : cout << " false\n";
return 0;
}
// This code is contributed by Vikash Sangai
Java
// Optimised school method based JAVA program
// to check if a number is prime
class GFG {
static boolean isPrime(int n)
{
// Corner case
if (n <= 1)
return false;
// Check from 2 to square root of n
for (int i = 2; i * i <= n; i++)
if (n % i == 0)
return false;
return true;
}
// Driver Program
public static void main(String args[])
{
if (isPrime(11))
System.out.println(" true");
else
System.out.println(" false");
if (isPrime(15))
System.out.println(" true");
else
System.out.println(" false");
}
}
// This code is contributed by Vikash Sangai
Python
# Optimised school method based PYTHON program
# to check if a number is prime
# import the math module
import math
# function to check whether the number is prime or not
def isPrime(n):
# Corner case
if (n <= 1):
return False
# Check from 2 to square root of n
for i in range(2, int(math.sqrt(n)) + 1):
if (n % i == 0):
return False
return True
# Driver Program to test above function
print("true") if isPrime(11) else print("false")
print("true") if isPrime(15) else print("false")
# This code is contributed by bhoomikavemula
C#
// Optimised school method based C#
// program to check if a number is prime
using System;
namespace prime {
public class GFG {
public static bool isprime(int n)
{
// Corner cases
if (n <= 1)
return false;
for (int i = 2; i * i <= n; i++)
if (n % i == 0)
return false;
return true;
}
// Driver program
public static void Main()
{
if (isprime(11))
Console.WriteLine("true");
else
Console.WriteLine("false");
if (isprime(15))
Console.WriteLine("true");
else
Console.WriteLine("false");
}
}
}
// This code is contributed by Vikash Sangai
JavaScript
<script>
// JavaScript code for the above approach
function isPrime(n)
{
// Corner case
if (n <= 1) return false;
// Check from 2 to square root of n
for (let i = 2; i*i <= n; i++)
if (n % i == 0)
return false;
return true;
}
// Driver Code
if(isPrime(11))
document.write(" true" + "<br/>");
else
document.write(" false" + "<br/>");
if(isPrime(15))
document.write(" true" + "<br/>");
else
document.write(" false" + "<br/>");
// This code is contributed by sanjoy_62.
</script>
Time Complexity: O(√n)
Auxiliary Space: O(1)
Another approach
It is based on the fact that all primes greater than 3 are of the form 6k ± 1, where k is any integer greater than 0. This is because all integers can be expressed as (6k + i), where i = −1, 0, 1, 2, 3, or 4. And note that 2 divides (6k + 0), (6k + 2), and (6k + 4) and 3 divides (6k + 3). So, a more efficient method is to test whether n is divisible by 2 or 3, then to check through all numbers of the form 6k ± 1 <= √n. This is 3 times faster than testing all numbers up to √n.
C++
// C++ program to check the given number
// is prime or not
#include <bits/stdc++.h>
using namespace std;
// Function to check if the given number
// is prime or not.
bool isPrime(int n)
{
if (n == 2 || n == 3)
return true;
if (n <= 1 || n % 2 == 0 || n % 3 == 0)
return false;
// To check through all numbers of the form 6k ± 1
for (int i = 5; i * i <= n; i += 6) {
if (n % i == 0 || n % (i + 2) == 0)
return false;
}
return true;
}
// Driver Code
int main()
{
isPrime(11) ? cout << " true\n" : cout << " false\n";
isPrime(15) ? cout << " true\n" : cout << " false\n";
return 0;
}
Java
// JAVA program to check the given number
// is prime or not
class GFG {
static boolean isPrime(int n)
{
// since 2 and 3 are prime
if (n == 2 || n == 3)
return true;
// if n<=1 or divided by 2 or 3 then it can not be prime
if (n <= 1 || n % 2 == 0 || n % 3 == 0)
return false;
// To check through all numbers of the form 6k ± 1
for (int i = 5; i * i <= n; i += 6)
{
if (n % i == 0 || n % (i + 2) == 0)
return false;
}
return true;
}
// Driver Program
public static void main(String args[])
{
if (isPrime(11))
System.out.println(" true");
else
System.out.println(" false");
if (isPrime(15))
System.out.println(" true");
else
System.out.println(" false");
}
}
// This code is contributed by Ujjwal Kumar Bhardwaj
Python
# Python program to check the given number
# is prime or not
# Function to check if the given number
# is prime or not.
import math
def isPrime(n):
if n == 2 or n == 3:
return True
elif n <= 1 or n % 2 == 0 or n % 3 == 0:
return False
# To check through all numbers of the form 6k ± 1
# until i <= square root of n, with step value 6
for i in range(5, int(math.sqrt(n))+1, 6):
if n % i == 0 or n % (i+2) == 0:
return False
return True
# # Driver code
print(isPrime(11))
print(isPrime(20))
# # This code is contributed by Harsh Master
C#
// C# program to check the given number
// is prime or not
using System;
class GFG {
static bool isPrime(int n)
{
// since 2 and 3 are prime
if (n == 2 || n == 3)
return true;
// if n<=1 or divided by 2 or 3 then it can not be prime
if (n <= 1 || n % 2 == 0 || n % 3 == 0)
return false;
// To check through all numbers of the form 6k ± 1
for (int i = 5; i * i <= n; i += 6)
{
if (n % i == 0 || n % (i + 2) == 0)
return false;
}
return true;
}
// Driver Program
public static void Main(String[] args)
{
if (isPrime(11))
Console.WriteLine(" true");
else
Console.WriteLine(" false");
if (isPrime(15))
Console.WriteLine(" true");
else
Console.WriteLine(" false");
}
}
// This code is contributed by Aman Kumar
JavaScript
<script>
// JavaScript program to check the given number
// is prime or not
// Function to check if the given number
// is prime or not.
function isPrime(n)
{
if (n == 2 || n == 3)
return true;
if (n <= 1 || n % 2 == 0 || n % 3 == 0)
return false;
// To check through all numbers of the form 6k ± 1
for (let i = 5; i * i <= n; i += 6) {
if (n % i == 0 || n % (i + 2) == 0)
return false;
}
return true;
}
// Driver Code
isPrime(11) ? document.write(" true" + "<br/>") : document.write(" false" + "<br/>");
isPrime(15) ? document.write(" true" + "<br/>") : document.write(" false" + "<br/>");
</script>
Time Complexity: O(√n)
Auxiliary Space: O(1)
Similar Reads
Check for Prime Number Given a number n, check whether it is a prime number or not.Note: A prime number is a number greater than 1 that has no positive divisors other than 1 and itself.Input: n = 7Output: trueExplanation: 7 is a prime number because it is greater than 1 and has no divisors other than 1 and itself.Input: n
11 min read
Primality Test Algorithms
Introduction to Primality Test and School MethodGiven a positive integer, check if the number is prime or not. A prime is a natural number greater than 1 that has no positive divisors other than 1 and itself. Examples of the first few prime numbers are {2, 3, 5, ...}Examples : Input: n = 11Output: trueInput: n = 15Output: falseInput: n = 1Output:
10 min read
Fermat Method of Primality TestGiven a number n, check if it is prime or not. We have introduced and discussed the School method for primality testing in Set 1.Introduction to Primality Test and School MethodIn this post, Fermat's method is discussed. This method is a probabilistic method and is based on Fermat's Little Theorem.
10 min read
Primality Test | Set 3 (MillerâRabin)Given a number n, check if it is prime or not. We have introduced and discussed School and Fermat methods for primality testing.Primality Test | Set 1 (Introduction and School Method) Primality Test | Set 2 (Fermat Method)In this post, the Miller-Rabin method is discussed. This method is a probabili
15+ min read
Solovay-Strassen method of Primality TestWe have already been introduced to primality testing in the previous articles in this series. Introduction to Primality Test and School MethodFermat Method of Primality TestPrimality Test | Set 3 (MillerâRabin)The SolovayâStrassen test is a probabilistic algorithm used to check if a number is prime
13 min read
Lucas Primality TestA number p greater than one is prime if and only if the only divisors of p are 1 and p. First few prime numbers are 2, 3, 5, 7, 11, 13, ...The Lucas test is a primality test for a natural number n, it can test primality of any kind of number.It follows from Fermatâs Little Theorem: If p is prime and
12 min read
Sieve of Eratosthenes Given a number n, print all primes smaller than or equal to n. It is also given that n is a small number. Examples:Input: n = 10Output: 2 3 5 7Explanation: The prime numbers up to 10 obtained by Sieve of Eratosthenes are 2 3 5 7 .Input: n = 20Output: 2 3 5 7 11 13 17 19Explanation: The prime numbers
6 min read
How is the time complexity of Sieve of Eratosthenes is n*log(log(n))? Pre-requisite: Sieve of Eratosthenes What is Sieve of Eratosthenes algorithm? In order to analyze it, let's take a number n and the task is to print the prime numbers less than n. Therefore, by definition of Sieve of Eratosthenes, for every prime number, it has to check the multiples of the prime an
3 min read
Sieve of Eratosthenes in 0(n) time complexity The classical Sieve of Eratosthenes algorithm takes O(N log (log N)) time to find all prime numbers less than N. In this article, a modified Sieve is discussed that works in O(N) time.Example : Given a number N, print all prime numbers smaller than N Input : int N = 15 Output : 2 3 5 7 11 13 Input :
12 min read
Programs and Problems based on Sieve of Eratosthenes
C++ Program for Sieve of EratosthenesGiven a number n, print all primes smaller than or equal to n. It is also given that n is a small number. For example, if n is 10, the output should be "2, 3, 5, 7". If n is 20, the output should be "2, 3, 5, 7, 11, 13, 17, 19".CPP// C++ program to print all primes smaller than or equal to // n usin
2 min read
Java Program for Sieve of EratosthenesGiven a number n, print all primes smaller than or equal to n. It is also given that n is a small number. For example, if n is 10, the output should be "2, 3, 5, 7". If n is 20, the output should be "2, 3, 5, 7, 11, 13, 17, 19". Java // Java program to print all primes smaller than or equal to // n
2 min read
Scala | Sieve of EratosthenesEratosthenes of Cyrene was a Greek mathematician, who discovered an amazing algorithm to find prime numbers. This article performs this algorithm in Scala. Step 1 : Creating an Int Stream Scala 1== def numberStream(n: Int): Stream[Int] = Stream.from(n) println(numberStream(10)) Output of above step
4 min read
Check if a number is Primorial Prime or notGiven a positive number N, the task is to check if N is a primorial prime number or not. Print 'YES' if N is a primorial prime number otherwise print 'NO.Primorial Prime: In Mathematics, A Primorial prime is a prime number of the form pn# + 1 or pn# - 1 , where pn# is the primorial of pn i.e the pro
10 min read
Sum of all Primes in a given range using Sieve of EratosthenesGiven a range [l, r], the task is to find the sum of all the prime numbers in the given range from l to r both inclusive.Examples: Input : l = 10, r = 20Output : 60Explanation: Prime numbers between [10, 20] are: 11, 13, 17, 19Therefore, sum = 11 + 13 + 17 + 19 = 60Input : l = 15, r = 25Output : 59E
1 min read
Prime Factorization using Sieve O(log n) for multiple queriesWe can calculate the prime factorization of a number "n" in O(sqrt(n)) as discussed here. But O(sqrt n) method times out when we need to answer multiple queries regarding prime factorization.In this article, we study an efficient method to calculate the prime factorization using O(n) space and O(log
11 min read
Java Program to Implement Sieve of Eratosthenes to Generate Prime Numbers Between Given RangeA number which is divisible by 1 and itself or a number which has factors as 1 and the number itself is called a prime number. The sieve of Eratosthenes is one of the most efficient ways to find all primes smaller than n when n is smaller than 10 million or so. Example: Input : from = 1, to = 20 Out
3 min read
Segmented Sieve Given a number n, print all primes smaller than n. Input: N = 10Output: 2, 3, 5, 7Explanation : The output â2, 3, 5, 7â for input N = 10 represents the list of the prime numbers less than or equal to 10. Input: N = 5Output: 2, 3, 5 Explanation : The output â2, 3, 5â for input N = 5 represents the li
15+ min read
Segmented Sieve (Print Primes in a Range) Given a range [low, high], print all primes in this range? For example, if the given range is [10, 20], then output is 11, 13, 17, 19. A Naive approach is to run a loop from low to high and check each number for primeness. A Better Approach is to precalculate primes up to the maximum limit using Sie
15 min read
Longest sub-array of Prime Numbers using Segmented Sieve Given an array arr[] of N integers, the task is to find the longest subarray where all numbers in that subarray are prime. Examples: Input: arr[] = {3, 5, 2, 66, 7, 11, 8} Output: 3 Explanation: Maximum contiguous prime number sequence is {2, 3, 5} Input: arr[] = {1, 2, 11, 32, 8, 9} Output: 2 Expla
13 min read
Sieve of Sundaram to print all primes smaller than n Given a number n, print all primes smaller than or equal to n.Examples: Input: n = 10Output: 2, 3, 5, 7Input: n = 20Output: 2, 3, 5, 7, 11, 13, 17, 19We have discussed Sieve of Eratosthenes algorithm for the above task. Below is Sieve of Sundaram algorithm.printPrimes(n)[Prints all prime numbers sma
10 min read