# A typical recursive Python
# implementation of QuickSort
# Function takes last element as pivot,
# places the pivot element at its correct
# position in sorted array, and places all
# smaller (smaller than pivot) to left of
# pivot and all greater elements to right
# of pivot
def partition(arr, low, high):
i = (low - 1) # index of smaller element
pivot = arr[high] # pivot
for j in range(low, high):
# If current element is smaller
# than or equal to pivot
if arr[j] <= pivot:
# increment index of
# smaller element
i += 1
arr[i], arr[j] = arr[j], arr[i]
arr[i + 1], arr[high] = arr[high], arr[i + 1]
return (i + 1)
# The main function that implements QuickSort
# arr[] --> Array to be sorted,
# low --> Starting index,
# high --> Ending index
# Function to do Quick sort
def quickSort(arr, low, high):
if low < high:
# pi is partitioning index, arr[p] is now
# at right place
pi = partition(arr, low, high)
# Separately sort elements before
# partition and after partition
quickSort(arr, low, pi-1)
quickSort(arr, pi + 1, high)
# Driver Code
if __name__ == '__main__' :
arr = [4, 2, 6, 9, 2]
n = len(arr)
# Calling quickSort function
quickSort(arr, 0, n - 1)
for i in range(n):
print(arr[i], end = " ")