Java Program for Pairs such that one is a power multiple of other
Last Updated :
30 May, 2022
We are given an array A[] of n-elements and a positive integer k(other than 1). Now you have find the number of pairs Ai, Aj such that Ai = Aj*(kx) where x is an integer. Given that (k?1).
Note: (Ai, Aj) and (Aj, Ai) must be count once.
Examples:
Input : A[] = {3, 6, 4, 2}, k = 2
Output : 2
Explanation : We have only two pairs
(4, 2) and (3, 6)Input : A[] = {2, 2, 2}, k = 2
Output : 3
Explanation : (2, 2), (2, 2), (2, 2)
that are (A1, A2), (A2, A3) and (A1, A3) are
total three pairs where Ai = Aj * (k^0)
To solve this problem, we first sort the given array and then for each element Ai, we find number of elements equal to value Ai * k^x for different value of x till Ai * k^x is less than or equal to largest of Ai.
Algorithm:
// Sorting given array
sort(A, A + n);
// for each A[i] traverse rest array
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
// count Aj such that Ai*k^x = Aj
int x = 0;
// Increase x till Ai * k^x <=
// largest element
while ((A[i] * pow(k, x)) <= A[j]) {
if ((A[i] * pow(k, x)) == A[j]) {
ans++;
break;
}
x++;
}
}
}
// Returning answer
return ans;
Implementation:
C++
// Program to find pairs count
#include <bits/stdc++.h>
using namespace std;
// Function
// To count the required pairs
int countPairs(int A[], int n, int k)
{
int ans = 0;
// Sort the given array
sort(A, A + n);
// for each A[i] traverse rest array
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
// count Aj such that Ai*k^x = Aj
int x = 0;
// increase x till Ai * k^x <= largest element
while ((A[i] * pow(k, x)) <= A[j]) {
if ((A[i] * pow(k, x)) == A[j]) {
ans++;
break;
}
x++;
}
}
}
return ans;
}
// Main driver program
int main()
{
int A[] = { 3, 8, 9, 12, 18, 4, 24, 2, 6 };
int n = sizeof(A) / sizeof(A[0]);
int k = 3;
cout << countPairs(A, n, k);
return 0;
}
Java
// Java Program to Find Pairs Count
import java.io.*;
import java.util.*;
class GFG {
// function to count the required pairs
static int countPairs(int A[], int n, int k)
{
int ans = 0;
// sort the given array
Arrays.sort(A);
// for each A[i] traverse rest array
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
// count Aj such that Ai*k^x = Aj
int x = 0;
// increase x till Ai * k^x <= largest
// element
while ((A[i] * Math.pow(k, x)) <= A[j]) {
if ((A[i] * Math.pow(k, x)) == A[j]) {
ans++;
break;
}
x++;
}
}
}
return ans;
}
// Driver program
public static void main(String[] args)
{
int A[] = { 3, 8, 9, 12, 18, 4, 24, 2, 6 };
int n = A.length;
int k = 3;
System.out.println(countPairs(A, n, k));
}
}
// This code is contributed by vt_m.
Python3
# Program to find pairs count
import math
# function to count the required pairs
def countPairs(A, n, k):
ans = 0
# sort the given array
A.sort()
# for each A[i] traverse rest array
for i in range(0, n):
for j in range(i + 1, n):
# count Aj such that Ai*k^x = Aj
x = 0
# increase x till Ai * k^x <= largest element
while ((A[i] * math.pow(k, x)) <= A[j]):
if ((A[i] * math.pow(k, x)) == A[j]):
ans += 1
break
x += 1
return ans
# driver program
A = [3, 8, 9, 12, 18, 4, 24, 2, 6]
n = len(A)
k = 3
print(countPairs(A, n, k))
# This code is contributed by
# Smitha Dinesh Semwal
C#
// C# program to find pairs count
using System;
class GFG {
// function to count the required pairs
static int countPairs(int[] A, int n, int k)
{
int ans = 0;
// sort the given array
Array.Sort(A);
// for each A[i] traverse rest array
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
// count Aj such that Ai*k^x = Aj
int x = 0;
// increase x till Ai * k^x <= largest
// element
while ((A[i] * Math.Pow(k, x)) <= A[j]) {
if ((A[i] * Math.Pow(k, x)) == A[j]) {
ans++;
break;
}
x++;
}
}
}
return ans;
}
// Driver program
public static void Main()
{
int[] A = { 3, 8, 9, 12, 18, 4, 24, 2, 6 };
int n = A.Length;
int k = 3;
Console.WriteLine(countPairs(A, n, k));
}
}
// This code is contributed by vt_m.
PHP
<?php
// PHP Program to find pairs count
// function to count
// the required pairs
function countPairs($A, $n, $k)
{
$ans = 0;
// sort the given array
sort($A);
// for each A[i]
// traverse rest array
for ($i = 0; $i < $n; $i++)
{
for ($j = $i + 1; $j < $n; $j++)
{
// count Aj such that Ai*k^x = Aj
$x = 0;
// increase x till Ai *
// k^x <= largest element
while (($A[$i] * pow($k, $x)) <= $A[$j])
{
if (($A[$i] * pow($k, $x)) == $A[$j])
{
$ans++;
break;
}
$x++;
}
}
}
return $ans;
}
// Driver Code
$A = array(3, 8, 9, 12, 18,
4, 24, 2, 6);
$n = count($A);
$k = 3;
echo countPairs($A, $n, $k);
// This code is contributed by anuj_67.
?>
JavaScript
<script>
// Javascript Program to find pairs count
// function to count the required pairs
function countPairs(A, n, k) {
var ans = 0;
// sort the given array
A.sort((a,b)=>a-b)
// for each A[i] traverse rest array
for (var i = 0; i < n; i++) {
for (var j = i + 1; j < n; j++) {
// count Aj such that Ai*k^x = Aj
var x = 0;
// increase x till Ai * k^x <= largest element
while ((A[i] * Math.pow(k, x)) <= A[j]) {
if ((A[i] * Math.pow(k, x)) == A[j]) {
ans++;
break;
}
x++;
}
}
}
return ans;
}
// driver program
var A = [3, 8, 9, 12, 18, 4, 24, 2, 6];
var n = A.length;
var k = 3;
document.write( countPairs(A, n, k));
// This code is contributed by rutvik_56.
</script>
Time Complexity: O(n*n), as nested loops are used
Auxiliary Space: O(1), as no extra space is used
Explore
Java Basics
OOP & Interfaces
Collections
Exception Handling
Java Advanced
Practice Java