Java Program to Count of rotations required to generate a sorted array
Last Updated :
25 Jan, 2022
Given an array arr[], the task is to find the number of rotations required to convert the given array to sorted form.
Examples:
Input: arr[] = {4, 5, 1, 2, 3}
Output: 2
Explanation:
Sorted array {1, 2, 3, 4, 5} after 2 anti-clockwise rotations.
Input: arr[] = {2, 1, 2, 2, 2}
Output: 1
Explanation:
Sorted array {1, 2, 2, 2, 2} after 1 anti-clockwise rotations.
Naive Approach:
To solve the problem mentioned above the first observation is if we have n elements in the array then after sorting, the largest element is at (n - 1)th position. After k number of anti-clockwise rotations, the largest element will be at index (k - 1) (kth element from start). Another thing to note here is that, after rotation, the next element of the largest element will always be the smallest element, (unless the largest element is at last index, possible if there was no rotation).
Hence,
Number of rotations (k) = index of smallest element (k) in the array
Below is the implementation of the above approach:
Java
// Java Program to find the
// count of rotations
public class GFG {
// Function to return the count of
// rotations
public static int countRotation(int[] arr,
int n)
{
for (int i = 1; i < n; i++) {
// Find the smallest element
if (arr[i] < arr[i - 1]) {
// Return its index
return i;
}
}
// If array is not
// rotated at all
return 0;
}
// Driver Code
public static void main(String[] args)
{
int[] arr1 = { 4, 5, 1, 2, 3 };
System.out.println(
countRotation(
arr1,
arr1.length));
}
}
Time Complexity: O(N)
Auxiliary Space: O(1)
Efficient Approach:
To optimize the above approach, we will use Binary Search. We can notice that, after being sorted and rotated, the given array is divided into two halves with non-decreasing elements, which is the only pre-requisite for binary search. Perform a recursive binary search in the array to find the index of the smallest element.
Below is the implementation of the above approach:
Java
// Java Program to implement
// the above approach
public class GFG {
// Function to return the
// count of rotations
public static int countRotation(int[] arr,
int low,
int high)
{
// If array is not rotated
if (low > high) {
return 0;
}
int mid = low + (high - low) / 2;
// Check if current element is
// greater than the next
// element
if (mid < high
&& arr[mid] > arr[mid + 1]) {
// the next element is
// the smallest
return mid + 1;
}
// Check if current element is
// smaller than it's previous
// element
if (mid > low
&& arr[mid] < arr[mid - 1]) {
// Current element is
// the smallest
return mid;
}
// Check if current element is
// greater than lower bound
if (arr[mid] > arr[low]) {
// The sequence is increasing
// so far
// Search for smallest
// element on the right
// subarray
return countRotation(arr,
mid + 1,
high);
}
if (arr[mid] < arr[high]) {
// Smallest element lies on the
// left subarray
return countRotation(arr,
low,
mid - 1);
}
else {
// Search for the smallest
// element on both subarrays
int rightIndex = countRotation(arr,
mid + 1,
high);
int leftIndex = countRotation(arr,
low,
mid - 1);
if (rightIndex == 0) {
return leftIndex;
}
return rightIndex;
}
}
// Driver Program
public static void main(String[] args)
{
int[] arr1 = { 4, 5, 1, 2, 3 };
System.out.println(
countRotation(
arr1,
0, arr1.length
- 1));
}
}
Time Complexity: O(N)
The complexity will be O(logN) for an array without duplicates. But if the array contains duplicates, then it will recursively call the search for both halves. So the worst-case complexity will be O(N).
Auxiliary Space:O(N)
At worst case, the recursion call stack will have N/2 recursion calls at a time.
Please refer complete article on
Count of rotations required to generate a sorted array for more details!
Similar Reads
Java Program to Count rotations required to sort given array in non-increasing order Given an array arr[] consisting of N integers, the task is to sort the array in non-increasing order by minimum number of anti-clockwise rotations. If it is not possible to sort the array, then print "-1". Otherwise, print the count of rotations. Examples: Input: arr[] = {2, 1, 5, 4, 3}Output: 2Expl
3 min read
Java Program to Count rotations in sorted and rotated linked list Given a linked list of n nodes which is first sorted, then rotated by k elements. Find the value of k. The idea is to traverse singly linked list to check condition whether current node value is greater than value of next node. If the given condition is true, then break the loop. Otherwise increase
3 min read
Java Program for Minimum rotations required to get the same string Given a string, we need to find the minimum number of rotations required to get the same string. Examples: Input : s = "geeks"Output : 5 Input : s = "aaaa"Output : 1 The idea is based on below post. A Program to check if strings are rotations of each other or not Step 1 : Initialize result = 0 (Here
2 min read
Java Program to Generate all rotations of a number Given an integer n, the task is to generate all the left shift numbers possible. A left shift number is a number that is generated when all the digits of the number are shifted one position to the left and the digit at the first position is shifted to the last.Examples: Input: n = 123 Output: 231 31
2 min read
Java Program to Count 1's in a sorted binary array Given a binary array sorted in non-increasing order, count the number of 1's in it. Examples: Input: arr[] = {1, 1, 0, 0, 0, 0, 0} Output: 2 Input: arr[] = {1, 1, 1, 1, 1, 1, 1} Output: 7 Input: arr[] = {0, 0, 0, 0, 0, 0, 0} Output: 0 A simple solution is to linearly traverse the array. The time c
3 min read