Longest Palindromic Substring using Dynamic Programming
Last Updated :
07 Mar, 2025
Given a string s, the task is to find the longest substring which is a palindrome. If there are multiple answers, then return the first occurrence of the longest palindromic substring from left to right.
Examples:
Input: s = "aaaabbaa"
Output: "aabbaa"
Explanation: The longest palindromic substring is "aabbaa".
Input: s = "geeks"
Output: "ee"
Input: s = "abc"
Output: "a"
Input: s = ""
Output: ""
Approach:
The idea is to use Dynamic Programming to store the status of smaller substrings and use these results to check if a longer substring forms a palindrome. If we know the status (i.e., palindrome or not) of the substring ranging [i, j], we can find the status of the substring ranging [i-1, j+1] by only matching the character s[i-1] and s[j+1].
- If the substring from i to j is not a palindrome, then the substring from i-1 to j+1 will also not be a palindrome. Otherwise, it will be a palindrome only if s[i-1] and s[j+1] are the same.
Based on this fact, we can create a 2D table (say dp[][] which stores status of substring s[i...j] ), and check for substrings with length from 1 to n. For each length find all the substrings starting from each character i and find if it is a palindrome or not using the above idea. The longest length for which a palindrome formed will be the required answer.
Illustration:
Follow the below illustration for a better understanding.
Consider the string "geeks". Below is the structure of the table formed and from this, we can see that the longest substring is 2.
Step by step approach:
- Maintain a boolean dp[n][n] that is filled in a bottom-up manner.
- Fill the table initially for substrings of length = 1 and length = 2 (All substrings of length 1 are palindrome and all substrings of length 2 with same characters are also palindrome).
- Iterate for all possible lengths from 3 to n:
- For each length iterate from i = 0 to n-length, find the end of the substring j = i+length-1. To calculate table[i][j], check the value of table[i+1][j-1]:
- if the value is true and str[i] is the same as str[j], then we make table[i][j] true.
- Otherwise, the value of table[i][j] is made false.
- Update the longest palindrome accordingly whenever a new palindrome of greater length is found.
C++
// C++ program to find the longest
// palindromic substring.
#include <bits/stdc++.h>
using namespace std;
// Function to find the longest palindrome substring
string longestPalindrome(string &s) {
int n = s.size();
vector<vector<bool>> dp(n, vector<bool>(n, false));
int start = 0, maxLen = 1;
// All substrings of length 1 are palindromes
for (int i = 0; i < n; ++i)
dp[i][i] = true;
// Check for sub-string of length 2
for (int i = 0; i < n - 1; ++i) {
if (s[i] == s[i + 1]) {
dp[i][i + 1] = true;
if (maxLen<2) {
start = i;
maxLen = 2;
}
}
}
// Check for lengths greater than 2
for (int k = 3; k <= n; ++k) {
for (int i = 0; i < n - k + 1; ++i) {
int j = i + k - 1;
if (dp[i + 1][j - 1] && s[i] == s[j]) {
dp[i][j] = true;
if (k > maxLen) {
start = i;
maxLen = k;
}
}
}
}
return s.substr(start, maxLen);
}
int main() {
string s = "aaaabbaa";
cout << longestPalindrome(s) << endl;
return 0;
}
Java
// Java program to find the longest
// palindromic substring.
import java.util.*;
class GfG {
// Function to find the longest palindrome substring
static String longestPalindrome(String s) {
int n = s.length();
boolean[][] dp = new boolean[n][n];
int start = 0, maxLen = 1;
// All substrings of length 1 are palindromes
for (int i = 0; i < n; ++i)
dp[i][i] = true;
// Check for sub-string of length 2
for (int i = 0; i < n - 1; ++i) {
if (s.charAt(i) == s.charAt(i + 1)) {
dp[i][i + 1] = true;
if (maxLen < 2) {
start = i;
maxLen = 2;
}
}
}
// Check for lengths greater than 2
for (int k = 3; k <= n; ++k) {
for (int i = 0; i < n - k + 1; ++i) {
int j = i + k - 1;
if (dp[i + 1][j - 1] && s.charAt(i) == s.charAt(j)) {
dp[i][j] = true;
if (k > maxLen) {
start = i;
maxLen = k;
}
}
}
}
return s.substring(start, start + maxLen);
}
public static void main(String[] args) {
String s = "aaaabbaa";
System.out.println(longestPalindrome(s));
}
}
Python
# Python program to find the longest
# palindromic substring.
# Function to find the longest palindrome substring
def longestPalindrome(s):
n = len(s)
dp = [[False] * n for _ in range(n)]
start, maxLen = 0, 1
# All substrings of length 1 are palindromes
for i in range(n):
dp[i][i] = True
# Check for sub-string of length 2
for i in range(n - 1):
if s[i] == s[i + 1]:
dp[i][i + 1] = True
if maxLen < 2:
start = i
maxLen = 2
# Check for lengths greater than 2
for k in range(3, n + 1):
for i in range(n - k + 1):
j = i + k - 1
if dp[i + 1][j - 1] and s[i] == s[j]:
dp[i][j] = True
if k > maxLen:
start = i
maxLen = k
return s[start:start + maxLen]
if __name__ == "__main__":
s = "aaaabbaa"
print(longestPalindrome(s))
C#
// C# program to find the longest
// palindromic substring.
using System;
class GfG {
// Function to find the longest palindrome substring
static string longestPalindrome(string s) {
int n = s.Length;
bool[,] dp = new bool[n, n];
int start = 0, maxLen = 1;
// All substrings of length 1 are palindromes
for (int i = 0; i < n; ++i)
dp[i, i] = true;
// Check for sub-string of length 2
for (int i = 0; i < n - 1; ++i) {
if (s[i] == s[i + 1]) {
dp[i, i + 1] = true;
if (maxLen < 2) {
start = i;
maxLen = 2;
}
}
}
// Check for lengths greater than 2
for (int k = 3; k <= n; ++k) {
for (int i = 0; i < n - k + 1; ++i) {
int j = i + k - 1;
if (dp[i + 1, j - 1] && s[i] == s[j]) {
dp[i, j] = true;
if (k > maxLen) {
start = i;
maxLen = k;
}
}
}
}
return s.Substring(start, maxLen);
}
static void Main(string[] args) {
string s = "aaaabbaa";
Console.WriteLine(longestPalindrome(s));
}
}
JavaScript
// JavaScript program to find the longest
// palindromic substring.
// Function to find the longest palindrome substring
function longestPalindrome(s) {
const n = s.length;
const dp = Array.from({ length: n }, () => Array(n).fill(false));
let start = 0, maxLen = 1;
// All substrings of length 1 are palindromes
for (let i = 0; i < n; ++i)
dp[i][i] = true;
// Check for sub-string of length 2
for (let i = 0; i < n - 1; ++i) {
if (s[i] === s[i + 1]) {
dp[i][i + 1] = true;
if (maxLen < 2) {
start = i;
maxLen = 2;
}
}
}
// Check for lengths greater than 2
for (let k = 3; k <= n; ++k) {
for (let i = 0; i < n - k + 1; ++i) {
const j = i + k - 1;
if (dp[i + 1][j - 1] && s[i] === s[j]) {
dp[i][j] = true;
if (k > maxLen) {
start = i;
maxLen = k;
}
}
}
}
return s.substring(start, start + maxLen);
}
//Driver code
const s = "aaaabbaa";
console.log(longestPalindrome(s));
Time Complexity: O(n^2)
Auxiliary Space: O(n^2)
Related Articles:
Similar Reads
Longest Palindromic Substring using Palindromic Tree | Set 3 Given a string, find the longest substring which is a palindrome. For example, if the given string is âforgeeksskeegforâ, the output should be âgeeksskeegâ. Prerequisite : Palindromic Tree | Longest Palindromic Substring Structure of Palindromic Tree : The palindromic Treeâs actual structure is clos
15+ min read
Distinct palindromic sub-strings of the given string using Dynamic Programming Given a string str of lowercase alphabets, the task is to find all distinct palindromic sub-strings of the given string. Examples: Input: str = "abaaa" Output: 5 Palindromic sub-strings are "a", "aa", "aaa", "aba" and "b" Input: str = "abcd" Output: 4 Approach: The solution to this problem has been
8 min read
Longest Palindromic Substring using hashing in O(nlogn) Given a string S, The task is to find the longest substring which is a palindrome using hashing in O(N log N) time. Input: S: âforgeeksskeegforâ, Output: âgeeksskeegâ Input: S: âGeeksâ, Output: âeeâ Hashing to Solve the Problem:The hashing approach to solving the longest palindromic substring proble
11 min read
Longest Palindromic Substring Given a string s, the task is to find the longest substring which is a palindrome. If there are multiple answers, then return the first appearing substring.Examples:Input: s = "forgeeksskeegfor" Output: "geeksskeeg"Explanation: There are several possible palindromic substrings like "kssk", "ss", "ee
12 min read
Rearrange string to obtain Longest Palindromic Substring Given string str, the task is to rearrange the given string to obtain the longest palindromic substring. Examples: Input: str = âgeeksforgeeksâOutput: eegksfskgeeorExplanation: eegksfskgee is the longest palindromic substring after rearranging the string.Therefore, the required output is eegksfskgee
9 min read