Longest Palindromic Substring using Palindromic Tree | Set 3
Last Updated :
28 Nov, 2023
Given a string, find the longest substring which is a palindrome. For example, if the given string is “forgeeksskeegfor”, the output should be “geeksskeeg”.
Prerequisite : Palindromic Tree | Longest Palindromic Substring
Structure of Palindromic Tree :
The palindromic Tree’s actual structure is close to the directed graph. It is actually a merged structure of two Trees that share some common nodes(see the figure below for a better understanding). Tree nodes store palindromic substrings of a given string by storing their indices. This tree consists of two types of edges:
- Insertion edge (weighted edge)
- Maximum Palindromic Suffix (un-weighted)
Insertion Edge :
Insertion edge from a node u to v with some weight x means that the node v is formed by inserting x at the front and end of the string at u. As 'u' is already a palindrome, hence the resulting string at node v will also be a palindrome. x will be a single character for every edge. Therefore, a node can have a max of 26 insertion edges (considering lower letter string).
Maximum Palindromic Suffix Edge :
As the name itself indicates that for a node this edge will point to its Maximum Palindromic Suffix String node. We will not be considering the complete string itself as the Maximum Palindromic Suffix as this will make no sense(self-loops). For simplicity purposes, we will call it Suffix edge(by which we mean maximum suffix except for the complete string). It is quite obvious that every node will have only 1 Suffix Edge as we will not store duplicate strings in the tree. We will create all the palindromic substrings and then return the last one we got since that would be the longest palindromic substring so far. Since Palindromic Tree stores the palindromes in order of arrival of a certain character, the Longest will always be at the last index of our tree array
Below is the implementation of the above approach :
C++
// C++ program to demonstrate working of
// palindromic tree
#include "bits/stdc++.h"
using namespace std;
#define MAXN 1000
struct Node {
// store start and end indexes of current
// Node inclusively
int start, end;
// stores length of substring
int length;
// stores insertion Node for all characters a-z
int insertEdg[26];
// stores the Maximum Palindromic Suffix Node for
// the current Node
int suffixEdg;
};
// two special dummy Nodes as explained above
Node root1, root2;
// stores Node information for constant time access
Node tree[MAXN];
// Keeps track the current Node while insertion
int currNode;
string s;
int ptr;
void insert(int idx)
{
// STEP 1//
/* search for Node X such that s[idx] X S[idx]
is maximum palindrome ending at position idx
iterate down the suffix link of currNode to
find X */
int tmp = currNode;
while (true) {
int curLength = tree[tmp].length;
if (idx - curLength >= 1
and s[idx] == s[idx - curLength - 1])
break;
tmp = tree[tmp].suffixEdg;
}
/* Now we have found X ....
* X = string at Node tmp
* Check : if s[idx] X s[idx] already exists or not*/
if (tree[tmp].insertEdg[s[idx] - 'a'] != 0) {
// s[idx] X s[idx] already exists in the tree
currNode = tree[tmp].insertEdg[s[idx] - 'a'];
return;
}
// creating new Node
ptr++;
// making new Node as child of X with
// weight as s[idx]
tree[tmp].insertEdg[s[idx] - 'a'] = ptr;
// calculating length of new Node
tree[ptr].length = tree[tmp].length + 2;
// updating end point for new Node
tree[ptr].end = idx;
// updating the start for new Node
tree[ptr].start = idx - tree[ptr].length + 1;
// STEP 2//
/* Setting the suffix edge for the newly created
Node tree[ptr]. Finding some String Y such that
s[idx] + Y + s[idx] is longest possible
palindromic suffix for newly created Node.*/
tmp = tree[tmp].suffixEdg;
// making new Node as current Node
currNode = ptr;
if (tree[currNode].length == 1) {
// if new palindrome's length is 1
// making its suffix link to be null string
tree[currNode].suffixEdg = 2;
return;
}
while (true) {
int curLength = tree[tmp].length;
if (idx - curLength >= 1
and s[idx] == s[idx - curLength - 1])
break;
tmp = tree[tmp].suffixEdg;
}
// Now we have found string Y
// linking current Nodes suffix link with
// s[idx]+Y+s[idx]
tree[currNode].suffixEdg
= tree[tmp].insertEdg[s[idx] - 'a'];
}
// driver program
int main()
{
// initializing the tree
root1.length = -1;
root1.suffixEdg = 1;
root2.length = 0;
root2.suffixEdg = 1;
tree[1] = root1;
tree[2] = root2;
ptr = 2;
currNode = 1;
// given string
s = "forgeeksskeegfor";
int l = s.length();
for (int i = 0; i < l; i++)
insert(i);
int maxx = 0;
string result = "";
for (int i = 3; i <= ptr; i++) {
string res = "";
for (int j = tree[i].start; j <= tree[i].end; j++)
res += s[j];
if (res.size() > maxx) {
maxx = res.size();
result = res;
}
}
cout << result;
return 0;
}
Java
// Nikunj Sonigara
// Define a class named Main
class Main {
// Define a static nested class named Node
static class Node {
int start, end; // Represents the start and end indices of a palindrome substring
int length; // Length of the palindrome substring
int[] insertEdge = new int[26]; // Array to store indices of child nodes for each character
int suffixEdge; // Index of the node representing the largest proper suffix palindrome
}
// Create two root nodes and an array to store nodes
static Node root1 = new Node();
static Node root2 = new Node();
static Node[] tree = new Node[1000];
static int ptr; // Pointer to the current node being processed
static int currNode; // Index of the current node in the tree
static String s; // Input string
// Main method
public static void main(String[] args) {
// Initialize the root nodes
root1.length = -1;
root1.suffixEdge = 1;
root2.length = 0;
root2.suffixEdge = 1;
// Create nodes and initialize the tree array
for (int i = 0; i < 1000; i++) {
tree[i] = new Node();
}
tree[1] = root1;
tree[2] = root2;
ptr = 2;
currNode = 1;
// Input string
s = "forgeeksskeegfor";
int l = s.length();
// Build the palindrome tree
for (int i = 0; i < l; i++) {
insert(i);
}
// Find the longest palindrome substring in the tree
int maxx = 0;
String result = "";
for (int i = 3; i <= ptr; i++) {
StringBuilder res = new StringBuilder();
for (int j = tree[i].start; j <= tree[i].end; j++) {
res.append(s.charAt(j));
}
if (res.length() > maxx) {
maxx = res.length();
result = res.toString();
}
}
// Print the result
System.out.println(result);
}
// Method to insert a character into the palindrome tree
static void insert(int idx) {
int tmp = currNode;
// Traverse the tree to find the largest proper suffix palindrome
while (true) {
int curLength = tree[tmp].length;
if (idx - curLength >= 1 && s.charAt(idx) == s.charAt(idx - curLength - 1)) {
break;
}
tmp = tree[tmp].suffixEdge;
}
// Check if the current character already has an edge in the tree
if (tree[tmp].insertEdge[s.charAt(idx) - 'a'] != 0) {
currNode = tree[tmp].insertEdge[s.charAt(idx) - 'a'];
return;
}
// Create a new node for the current character
ptr++;
tree[tmp].insertEdge[s.charAt(idx) - 'a'] = ptr;
tree[ptr].length = tree[tmp].length + 2;
tree[ptr].end = idx;
tree[ptr].start = idx - tree[ptr].length + 1;
// Update the current node and handle special case for length 1 palindrome
tmp = tree[tmp].suffixEdge;
currNode = ptr;
if (tree[currNode].length == 1) {
tree[currNode].suffixEdge = 2;
return;
}
// Traverse the tree again to find the largest proper suffix palindrome
while (true) {
int curLength = tree[tmp].length;
if (idx - curLength >= 1 && s.charAt(idx) == s.charAt(idx - curLength - 1)) {
break;
}
tmp = tree[tmp].suffixEdge;
}
// Update the suffix edge for the current node
tree[currNode].suffixEdge = tree[tmp].insertEdge[s.charAt(idx) - 'a'];
}
}
Python3
# Python program to demonstrate working of
# palindromic tree
MAXN = 1000
class Node:
def __init__(self):
# store start and end indexes of current Node inclusively
self.start = 0
self.end = 0
# stores length of substring
self.length = 0
# stores insertion Node for all characters a-z
self.insertEdg = [0]*26
# stores the Maximum Palindromic Suffix Node for the current Node
self.suffixEdg = 0
# two special dummy Nodes as explained above
root1 = Node()
root2 = Node()
# stores Node information for constant time access
tree = [Node() for i in range(MAXN)]
# Keeps track the current Node while insertion
currNode = 0
s = ""
ptr = 0
def insert(idx):
global currNode, ptr
# STEP 1
# search for Node X such that s[idx] X S[idx] is maximum palindrome ending at position idx
# iterate down the suffix link of currNode to find X
tmp = currNode
while True:
curLength = tree[tmp].length
if idx - curLength >= 1 and s[idx] == s[idx - curLength - 1]:
break
tmp = tree[tmp].suffixEdg
# Now we have found X....
# X = string at Node tmp
# Check: if s[idx] X s[idx] already exists or not
if tree[tmp].insertEdg[ord(s[idx]) - ord('a')] != 0:
# s[idx] X s[idx] already exists in the tree
currNode = tree[tmp].insertEdg[ord(s[idx]) - ord('a')]
return
# creating new Node
ptr += 1
# making new Node as child of X with weight as s[idx]
tree[tmp].insertEdg[ord(s[idx]) - ord('a')] = ptr
# calculating length of new Node
tree[ptr].length = tree[tmp].length + 2
# updating end point for new Node
tree[ptr].end = idx
# updating the start for new Node
tree[ptr].start = idx - tree[ptr].length + 1
# STEP 2
# Setting the suffix edge for the newly created Node tree[ptr]. Finding some String Y
# such that s[idx] + Y + s[idx] is longest possible palindromic suffix for newly created Node.
tmp = tree[tmp].suffixEdg
# making new Node as current Node
currNode = ptr
if tree[currNode].length == 1:
# if new palindrome's length is 1, making its suffix link to be null string
tree[currNode].suffixEdg = 2
return
while True:
curLength = tree[tmp].length
if idx - curLength >= 1 and s[idx] == s[idx - curLength - 1]:
break
tmp = tree[tmp].suffixEdg
# Now we have found string Y
# linking current Nodes suffix link with s[idx]+Y+s[idx]
tree[currNode].suffixEdg = tree[tmp].insertEdg[ord(s[idx]) - ord('a')]
# driver program
# initializing the tree
root1.length = -1
root1.suffixEdg = 1
root2.length = 0
root2.suffixEdg = 1
tree[1] = root1
tree[2] = root2
ptr = 2
currNode = 1
# given string
s = "forgeeksskeegfor"
l = len(s)
for i in range(l):
insert(i)
maxx = 0
result = ""
for i in range(3, ptr+1):
res = ""
for j in range(tree[i].start, tree[i].end+1):
res += s[j]
if len(res) > maxx:
maxx = len(res)
result = res
print(result)
C#
using System;
class PalindromicTree {
const int MAXN = 1000;
// Node structure
struct Node
{
// Store start and end indexes of current Node
// inclusively
public int start, end;
// Store length of substring
public int length;
// Store insertion Node for all characters a-z
public int[] insertEdge;
// Store the Maximum Palindromic Suffix Node for the
// current Node
public int suffixEdge;
}
// Two special dummy Nodes as explained above
static Node root1, root2;
// Store Node information for constant time access
static Node[] tree;
// Keep track of the current Node while insertion
static int currNode;
static string s;
static int ptr;
// Function to insert a character into the Palindromic
// Tree
static void Insert(int idx)
{
// STEP 1
/* Search for Node X such that s[idx] X s[idx]
* is the maximum palindrome ending at position idx.
* Iterate down the suffix link of currNode to find
* X. */
int tmp = currNode;
while (true) {
int curLength = tree[tmp].length;
if (idx - curLength >= 1
&& s[idx] == s[idx - curLength - 1])
break;
tmp = tree[tmp].suffixEdge;
}
/* Now we have found X...
* X = string at Node tmp
* Check: if s[idx] X s[idx] already exists or not
*/
if (tree[tmp].insertEdge[s[idx] - 'a'] != 0) {
// s[idx] X s[idx] already exists in the tree
currNode = tree[tmp].insertEdge[s[idx] - 'a'];
return;
}
// Creating a new Node
ptr++;
// Initializing the insertEdge array for the new
// Node
tree[ptr].insertEdge = new int[26];
// Making the new Node as a child of X with weight
// as s[idx]
tree[tmp].insertEdge[s[idx] - 'a'] = ptr;
// Calculating the length of the new Node
tree[ptr].length = tree[tmp].length + 2;
// Updating the end point for the new Node
tree[ptr].end = idx;
// Updating the start for the new Node
tree[ptr].start = idx - tree[ptr].length + 1;
// STEP 2
/* Setting the suffix edge for the newly created
* Node tree[ptr]. Finding some String Y such that
* s[idx] + Y + s[idx] is the longest possible
* palindromic suffix for the newly created Node. */
tmp = tree[tmp].suffixEdge;
// Making the new Node as the current Node
currNode = ptr;
if (tree[currNode].length == 1) {
// If the new palindrome's length is 1,
// making its suffix link to be a null string
tree[currNode].suffixEdge = 2;
return;
}
while (true) {
int curLength = tree[tmp].length;
if (idx - curLength >= 1
&& s[idx] == s[idx - curLength - 1])
break;
tmp = tree[tmp].suffixEdge;
}
// Now we have found string Y
// Linking the current Node's suffix link with
// s[idx]+Y+s[idx]
tree[currNode].suffixEdge
= tree[tmp].insertEdge[s[idx] - 'a'];
}
// Driver program
static void Main()
{
// Initializing the tree
root1.length = -1;
root1.suffixEdge = 1;
root1.insertEdge = new int[26];
root2.length = 0;
root2.suffixEdge = 1;
root2.insertEdge = new int[26];
tree = new Node[MAXN];
tree[1] = root1;
tree[2] = root2;
ptr = 2;
currNode = 1;
// Given string
s = "forgeeksskeegfor";
int l = s.Length;
for (int i = 0; i < l; i++)
Insert(i);
int maxx = 0;
string result = "";
for (int i = 3; i <= ptr; i++) {
string res = "";
for (int j = tree[i].start; j <= tree[i].end;
j++)
res += s[j];
if (res.Length > maxx) {
maxx = res.Length;
result = res;
}
}
Console.WriteLine(result);
}
}
JavaScript
// JavaScript program to demonstrate working of
// palindromic tree
const MAXN = 1000;
class Node {
constructor() {
this.start = 0; // store start and end indexes of current Node inclusively
this.end = 0;
this.length = 0; // stores length of substring
this.insertEdg = Array(26).fill(0); // stores insertion Node for all characters a-z
this.suffixEdg = 0; // stores the Maximum Palindromic Suffix Node for the current Node
}
}
const root1 = new Node(); // two special dummy Nodes as explained above
const root2 = new Node();
const tree = Array(MAXN).fill().map(() => new Node()); // stores Node information for constant time access
let currNode = 0;
let s = "";
let ptr = 0;
function insert(idx) {
let tmp;
// STEP 1
// search for Node X such that s[idx] X S[idx] is maximum palindrome ending at position idx
// iterate down the suffix link of currNode to find X
tmp = currNode;
while (true) {
const curLength = tree[tmp].length;
if (idx - curLength >= 1 && s[idx] === s[idx - curLength - 1]) {
break;
}
tmp = tree[tmp].suffixEdg;
}
// Now we have found X....
// X = string at Node tmp
// Check: if s[idx] X s[idx] already exists or not
if (tree[tmp].insertEdg[s.charCodeAt(idx) - 97] !== 0) {
// s[idx] X s[idx] already exists in the tree
currNode = tree[tmp].insertEdg[s.charCodeAt(idx) - 97];
return;
}
// creating new Node
ptr += 1;
// making new Node as child of X with weight as s[idx]
tree[tmp].insertEdg[s.charCodeAt(idx) - 97] = ptr;
// calculating length of new Node
tree[ptr].length = tree[tmp].length + 2;
// updating end point for new Node
tree[ptr].end = idx;
// updating the start for new Node
tree[ptr].start = idx - tree[ptr].length + 1;
// STEP 2
// Setting the suffix edge for the newly created Node tree[ptr]. Finding some String Y
// such that s[idx] + Y + s[idx] is longest possible palindromic suffix for newly created Node.
tmp = tree[tmp].suffixEdg;
// making new Node as current Node
currNode = ptr;
if (tree[currNode].length === 1) {
// if new palindrome's length is 1, making its suffix link to be null string
tree[currNode].suffixEdg = 2;
return;
}
while (true) {
const curLength = tree[tmp].length;
if (idx - curLength >= 1 && s[idx] === s[idx - curLength - 1]) {
break;
}
tmp = tree[tmp].suffixEdg;
}
// Now we have found string Y
// linking current Nodes suffix link with s[idx]+Y+s[idx]
tree[currNode].suffixEdg = tree[tmp].insertEdg[s.charCodeAt(idx) - 97];
}
// initializing the tree
// const root1 = new Node();
root1.length = -1;
root1.suffixEdg = 1;
// const root2 = new Node();
root2.length = 0;
root2.suffixEdg = 1;
tree[1] = root1
tree[2] = root2
ptr = 2;
currNode = 1;
s = "forgeeksskeegfor";
const l = s.length;
for (let i = 0; i < l; i++) {
insert(i);
}
let maxx = 0;
let result = "";
for (let i = 3; i <= ptr; i++) {
let res = "";
for (let j = tree[i].start; j <= tree[i].end; j++) {
res += s[j];
}
if (res.length > maxx) {
maxx = res.length;
result = res;
}
}
console.log(result);
// Contributed by adityasha4x71
Time Complexity:
The time complexity for the building process will be O(k*n), here “n” is the length of the string and ‘k‘ is the extra iterations required to find the string X and string Y in the suffix links every time we insert a character.
Let’s try to approximate the constant ‘k’. We shall consider a worst case like s = “aaaaaabcccccccdeeeeeeeeef”. In this case for similar streak of continuous characters it will take extra 2 iterations per index to find both string X and Y in the suffix links , but as soon as it reaches some index i such that s[i]!=s[i-1] the left most pointer for the maximum length suffix will reach its rightmost limit. Therefore, for all i when s[i]!=s[i-1] , it will cost in total n iterations(summing over each iteration) and for rest i when s[i]==s[i-1] it takes 2 iteration which sums up over all such i and takes 2*n iterations. Hence, approximately our complexity in this case will be O(3*n) ~ O(n). So, we can roughly say that the constant factor ‘k’ will be very less. Therefore, we can consider the overall complexity to be linear O(length of string). You may refer the reference links for better understanding.
Similar Reads
Longest Palindromic Substring using Dynamic Programming Given a string s, the task is to find the longest substring which is a palindrome. If there are multiple answers, then return the first occurrence of the longest palindromic substring from left to right.Examples:Input: s = "aaaabbaa"Output: "aabbaa"Explanation: The longest palindromic substring is "
7 min read
Longest Palindromic Substring using hashing in O(nlogn) Given a string S, The task is to find the longest substring which is a palindrome using hashing in O(N log N) time. Input: S: âforgeeksskeegforâ, Output: âgeeksskeegâ Input: S: âGeeksâ, Output: âeeâ Hashing to Solve the Problem:The hashing approach to solving the longest palindromic substring proble
11 min read
Longest Non-palindromic substring Given a string of size n. The task is to find the length of the largest substring which is not a palindrome. Examples: Input : abba Output : 3 Here maximum length non-palindromic substring is 'abb' which is of length '3'. There could be other non-palindromic sub-strings also of length three like 'bb
7 min read
Longest Palindromic Substring Given a string s, the task is to find the longest substring which is a palindrome. If there are multiple answers, then return the first appearing substring.Examples:Input: s = "forgeeksskeegfor" Output: "geeksskeeg"Explanation: There are several possible palindromic substrings like "kssk", "ss", "ee
12 min read
Rearrange string to obtain Longest Palindromic Substring Given string str, the task is to rearrange the given string to obtain the longest palindromic substring. Examples: Input: str = âgeeksforgeeksâOutput: eegksfskgeeorExplanation: eegksfskgee is the longest palindromic substring after rearranging the string.Therefore, the required output is eegksfskgee
9 min read
Print Longest Palindromic Subsequence Given a sequence, print a longest palindromic subsequence of it. Examples : Input : BBABCBCAB Output : BABCBAB The above output is the longest palindromic subsequence of given sequence. "BBBBB" and "BBCBB" are also palindromic subsequences of the given sequence, but not the longest ones. Input : GEE
11 min read
Palindrome Substrings Count using Center Expansion Given a string, the task is to find the count of all the palindromic substrings in a given string with a length greater than or equal to 2.Examples:Input: s = "abaab"Output: 3Explanation: Palindrome substrings (of length > 1) are "aba" , "aa" , "baab" Input : s = "aaa"Output: 3Explanation : Palin
6 min read
Length of Longest Palindrome Substring Given a string S of length N, the task is to find the length of the longest palindromic substring from a given string. Examples: Input: S = "abcbab"Output: 5Explanation: string "abcba" is the longest substring that is a palindrome which is of length 5. Input: S = "abcdaa"Output: 2Explanation: string
15+ min read
Print the longest palindromic prefix of a given string Given a string str, the task is to find the longest palindromic prefix of the given string. Examples: Input: str = "abaac" Output: aba Explanation: The longest prefix of the given string which is palindromic is "aba". Input: str = "abacabaxyz" Output: abacaba Explanation: The prefixes of the given s
12 min read
Longest palindromic string possible after removal of a substring Given a string str, the task is to find the longest palindromic string that can be obtained from it after removing a substring. Examples: Input: str = "abcdefghiedcba" Output: "abcdeiedcba" Explanation: Removal of substring "fgh" leaves the remaining string palindromic Input: str = "abba" Output: "a
11 min read