# importing libraries
import numpy as np
import sklearn
from sklearn import metrics
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
data = pd.read_csv("gfg_data")
x = data[['Pclass', 'Sex', 'Age', 'Parch', 'Embarked', 'Fare',
'Has_Cabin', 'FamilySize', 'title', 'IsAlone']]
y = data[['Survived']]
X_train, X_test, Y_train, Y_test = train_test_split(x, y,
test_size = 0.3, random_state = None)
# logistic Regression
lr = LogisticRegression()
lr.fit(X_train, Y_train)
Y_pred = lr.predict(X_test)
LogReg = round(lr.score(X_test, Y_test), 2)
mae_lr = round(metrics.mean_absolute_error(Y_test, Y_pred), 4)
mse_lr = round(metrics.mean_squared_error(Y_test, Y_pred), 4)
# KNN
knn = KNeighborsClassifier(n_neighbors = 2)
knn.fit(X_train, Y_train)
Y_pred = knn.predict(X_test)
KNN = round(knn.score(X_test, Y_test), 2)
mae_knn = metrics.mean_absolute_error(Y_test, Y_pred)
mse_knn = metrics.mean_squared_error(Y_test, Y_pred)
compare_models = pd.DataFrame(
{ 'Model' : ['LogReg', 'KNN'],
'Score' : [LogReg, KNN],
'MAE' : [mae_lr, mae_knn],
'MSE' : [mse_lr, mse_knn]
})
print(compare_models)