Most important type of Algorithms
Last Updated :
02 Nov, 2023
An algorithm is a step-by-step procedure to solve a problem. A good algorithm should be optimized in terms of time and space. Different types of problems require different types of algorithmic techniques to be solved in the most optimized manner. There are many types of algorithms but the most important and fundamental algorithms that you must are discussed in this article.
This is the most basic and simplest type of algorithm. A Brute Force Algorithm is the straightforward approach to a problem i.e., the first approach that comes to our mind on seeing the problem. More technically it is just like iterating every possibility available to solve that problem.
Example:
If there is a lock of 4-digit PIN. The digits to be chosen from 0-9 then the brute force will be trying all possible combinations one by one like 0001, 0002, 0003, 0004, and so on until we get the right PIN. In the worst case, it will take 10,000 tries to find the right combination.
This type of algorithm is based on recursion. In recursion, a problem is solved by breaking it into subproblems of the same type and calling own self again and again until the problem is solved with the help of a base condition.
Some common problem that is solved using recursive algorithms are Factorial of a Number, Fibonacci Series, Tower of Hanoi, DFS for Graph, etc.
In Divide and Conquer algorithms, the idea is to solve the problem in two sections, the first section divides the problem into subproblems of the same type. The second section is to solve the smaller problem independently and then add the combined result to produce the final answer to the problem.
Some common problem that is solved using Divide and Conquers Algorithms are Binary Search, Merge Sort, Quick Sort, Strassen's Matrix Multiplication, etc.
This type of algorithm is also known as the memoization technique because in this the idea is to store the previously calculated result to avoid calculating it again and again. In Dynamic Programming, divide the complex problem into smaller overlapping subproblems and store the result for future use.
The following problems can be solved using the Dynamic Programming algorithm Knapsack Problem, Weighted Job Scheduling, Floyd Warshall Algorithm, etc.
In the Greedy Algorithm, the solution is built part by part. The decision to choose the next part is done on the basis that it gives an immediate benefit. It never considers the choices that had been taken previously.
Some common problems that can be solved through the Greedy Algorithm are Dijkstra Shortest Path Algorithm, Prim's Algorithm, Kruskal's Algorithm, Huffman Coding, etc.
In Backtracking Algorithm, the problem is solved in an incremental way i.e. it is an algorithmic technique for solving problems recursively by trying to build a solution incrementally, one piece at a time, removing those solutions that fail to satisfy the constraints of the problem at any point of time.
Some common problems that can be solved through the Backtracking Algorithm are the Hamiltonian Cycle, M-Coloring Problem, N Queen Problem, Rat in Maze Problem, etc.
In the randomized algorithm, we use a random number.it helps to decide the expected outcome. The decision to choose the random number so it gives the immediate benefit
Some common problems that can be solved through the Randomized Algorithm are Quicksort: In Quicksort we use the random number for selecting the pivot.
The sorting algorithm is used to sort data in maybe ascending or descending order. Its also used for arranging data in an efficient and useful manner.
Some common problems that can be solved through the sorting Algorithm are Bubble sort, insertion sort, merge sort, selection sort, and quick sort are examples of the Sorting algorithm.
The searching algorithm is the algorithm that is used for searching the specific key in particular sorted or unsorted data. Some common problems that can be solved through the Searching Algorithm are Binary search or linear search is one example of a Searching algorithm.
Hashing algorithms work the same as the Searching algorithm but they contain an index with a key ID i.e a key-value pair. In hashing, we assign a key to specific data.
Some common problems can be solved through the Hashing Algorithm in password verification.
Similar Reads
Algorithms Tutorial Algorithm is a step-by-step procedure for solving a problem or accomplishing a task. In the context of data structures and algorithms, it is a set of well-defined instructions for performing a specific computational task. Algorithms are fundamental to computer science and play a very important role
1 min read
What is an Algorithm | Introduction to Algorithms The word Algorithm means "A set of finite rules or instructions to be followed in calculations or other problem-solving operations" Or "A procedure for solving a mathematical problem in a finite number of steps that frequently involves recursive operations".Therefore Algorithm refers to a sequence o
15+ min read
Definition, Types, Complexity and Examples of Algorithm An algorithm is a well-defined sequential computational technique that accepts a value or a collection of values as input and produces the output(s) needed to solve a problem. Or we can say that an algorithm is said to be accurate if and only if it stops with the proper output for each input instanc
13 min read
Algorithms Design Techniques What is an algorithm? An Algorithm is a procedure to solve a particular problem in a finite number of steps for a finite-sized input. The algorithms can be classified in various ways. They are: Implementation MethodDesign MethodDesign ApproachesOther ClassificationsIn this article, the different alg
10 min read
Why is Analysis of Algorithm important? Why is Performance of Algorithms Important ? There are many important things that should be taken care of, like user-friendliness, modularity, security, maintainability, etc. Why worry about performance? The answer to this is simple, we can have all the above things only if we have performance. So p
2 min read
Analysis of Algorithms
Asymptotic AnalysisGiven two algorithms for a task, how do we find out which one is better? One naive way of doing this is - to implement both the algorithms and run the two programs on your computer for different inputs and see which one takes less time. There are many problems with this approach for the analysis of
3 min read
Worst, Average and Best Case Analysis of AlgorithmsIn the previous post, we discussed how Asymptotic analysis overcomes the problems of the naive way of analyzing algorithms. Now let us learn about What is Worst, Average, and Best cases of an algorithm:1. Worst Case Analysis (Mostly used) In the worst-case analysis, we calculate the upper bound on t
10 min read
Types of Asymptotic Notations in Complexity Analysis of AlgorithmsWe have discussed Asymptotic Analysis, and Worst, Average, and Best Cases of Algorithms. The main idea of asymptotic analysis is to have a measure of the efficiency of algorithms that don't depend on machine-specific constants and don't require algorithms to be implemented and time taken by programs
8 min read
How to Analyse Loops for Complexity Analysis of AlgorithmsWe have discussed Asymptotic Analysis, Worst, Average and Best Cases and Asymptotic Notations in previous posts. In this post, an analysis of iterative programs with simple examples is discussed. The analysis of loops for the complexity analysis of algorithms involves finding the number of operation
15+ min read
How to analyse Complexity of Recurrence RelationThe analysis of the complexity of a recurrence relation involves finding the asymptotic upper bound on the running time of a recursive algorithm. This is usually done by finding a closed-form expression for the number of operations performed by the algorithm as a function of the input size, and then
7 min read
Introduction to Amortized AnalysisAmortized Analysis is used for algorithms where an occasional operation is very slow, but most other operations are faster. In Amortized Analysis, we analyze a sequence of operations and guarantee a worst-case average time that is lower than the worst-case time of a particularly expensive operation.
10 min read
Types of Algorithms
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
3 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
What is Pattern Searching ?Pattern searching in Data Structures and Algorithms (DSA) is a fundamental concept that involves searching for a specific pattern or sequence of elements within a given data structure. This technique is commonly used in string matching algorithms to find occurrences of a particular pattern within a
5 min read
Backtracking AlgorithmBacktracking algorithms are like problem-solving strategies that help explore different options to find the best solution. They work by trying out different paths and if one doesn't work, they backtrack and try another until they find the right one. It's like solving a puzzle by testing different pi
4 min read
Divide and Conquer AlgorithmDivide and Conquer algorithm is a problem-solving strategy that involves. Divide : Break the given problem into smaller non-overlapping problems.Conquer : Solve Smaller ProblemsCombine : Use the Solutions of Smaller Problems to find the overall result.Examples of Divide and Conquer are Merge Sort, Q
1 min read
Mathematical AlgorithmsThe following is the list of mathematical coding problem ordered topic wise. Please refer Mathematical Algorithms (Difficulty Wise) for the difficulty wise list of problems. GCD and LCM: GCD of Two Numbers LCM of Two Numbers LCM of array GCD of array Basic and Extended Euclidean Steinâs Algorithm fo
5 min read
Geometric AlgorithmsGeometric algorithms are a type of algorithm that deal with solving problems related to geometry. These algorithms are used to solve various geometric problems such as computing the area of a polygon, finding the intersection of geometric shapes, determining the convex hull of a set of points, and m
4 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Graph AlgorithmsGraph algorithms are methods used to manipulate and analyze graphs, solving various range of problems like finding the shortest path, cycles detection. If you are looking for difficulty-wise list of problems, please refer to Graph Data Structure.BasicsGraph and its representationsBFS and DFS Breadth
3 min read
Randomized AlgorithmsRandomized algorithms in data structures and algorithms (DSA) are algorithms that use randomness in their computations to achieve a desired outcome. These algorithms introduce randomness to improve efficiency or simplify the algorithm design. By incorporating random choices into their processes, ran
2 min read
Branch and Bound AlgorithmThe Branch and Bound Algorithm is a method used in combinatorial optimization problems to systematically search for the best solution. It works by dividing the problem into smaller subproblems, or branches, and then eliminating certain branches based on bounds on the optimal solution. This process c
1 min read
The Role of Algorithms in Computing Algorithms play a crucial role in computing by providing a set of instructions for a computer to perform a specific task. They are used to solve problems and carry out tasks in computer systems, such as sorting data, searching for information, image processing, and much more. An algorithm defines th
8 min read
Most important type of Algorithms What is an Algorithm?An algorithm is a step-by-step procedure to solve a problem. A good algorithm should be optimized in terms of time and space. Different types of problems require different types of algorithmic techniques to be solved in the most optimized manner. There are many types of algorith
4 min read