Given two positive integers N, M. The task is to find the number of strings of length N under the alphabet set of size M such that no substrings of size greater than 1 is palindromic.
Examples:
Input : N = 2, M = 3
Output : 6
In this case, set of alphabet are 3, say {A, B, C}
All possible string of length 2, using 3 letters are:
{AA, AB, AC, BA, BB, BC, CA, CB, CC}
Out of these {AA, BB, CC} contain palindromic substring,
so our answer will be
8 - 2 = 6.
Input : N = 2, M = 2
Output : 2
Out of {AA, BB, AB, BA}, only {AB, BA} contain
non-palindromic substrings.
First, observe, a string does not contain any palindromic substring if the string doesn't have any palindromic substring of the length 2 and 3, because all the palindromic string of the greater lengths contains at least one palindromic substring of the length of 2 or 3, basically in the center.
So, the following is true:
- There are M ways to choose the first symbol of the string.
- Then there are (M - 1) ways to choose the second symbol of the string. Basically, it should not be equal to first one.
- Then there are (M - 2) ways to choose any next symbol. Basically, it should not coincide with the previous symbols, that aren't equal.
Knowing this, we can evaluate the answer in the following ways:
- If N = 1, then the answer will be M.
- If N = 2, then the answer is M*(M - 1).
- If N >= 3, then M * (M - 1) * (M - 2)N-2.
Below is the implementation of above idea :
// CPP program to count number of strings of
// size m such that no substring is palindrome.
#include <bits/stdc++.h>
using namespace std;
// Return the count of strings with
// no palindromic substring.
int numofstring(int n, int m)
{
if (n == 1)
return m;
if (n == 2)
return m * (m - 1);
return m * (m - 1) * pow(m - 2, n - 2);
}
// Driven Program
int main()
{
int n = 2, m = 3;
cout << numofstring(n, m) << endl;
return 0;
}
// Java program to count number of strings of
// size m such that no substring is palindrome.
import java.io.*;
class GFG {
// Return the count of strings with
// no palindromic substring.
static int numofstring(int n, int m)
{
if (n == 1)
return m;
if (n == 2)
return m * (m - 1);
return m * (m - 1) * (int)Math.pow(m - 2, n - 2);
}
// Driven Program
public static void main (String[] args)
{
int n = 2, m = 3;
System.out.println(numofstring(n, m));
}
}
// This code is contributed by ajit.
# Python3 program to count number of strings of
# size m such that no substring is palindrome
# Return the count of strings with
# no palindromic substring.
def numofstring(n, m):
if n == 1:
return m
if n == 2:
return m * (m - 1)
return m * (m - 1) * pow(m - 2, n - 2)
# Driven Program
n = 2
m = 3
print (numofstring(n, m))
# This code is contributed
# by Shreyanshi Arun.
// C# program to count number of strings of
// size m such that no substring is palindrome.
using System;
class GFG {
// Return the count of strings with
// no palindromic substring.
static int numofstring(int n, int m)
{
if (n == 1)
return m;
if (n == 2)
return m * (m - 1);
return m * (m - 1) * (int)Math.Pow(m - 2,
n - 2);
}
// Driver Code
public static void Main ()
{
int n = 2, m = 3;
Console.Write(numofstring(n, m));
}
}
// This code is contributed by Nitin Mittal.
<?php
// PHP program to count number
// of strings of size m such
// that no substring is palindrome.
// Return the count of strings with
// no palindromic substring.
function numofstring($n, $m)
{
if ($n == 1)
return $m;
if ($n == 2)
return $m * ($m - 1);
return $m * ($m - 1) *
pow($m - 2, $n - 2);
}
// Driver Code
{
$n = 2; $m = 3;
echo numofstring($n, $m) ;
return 0;
}
// This code is contributed by nitin mittal.
?>
<script>
// JavaScript program to count number of strings of
// size m such that no substring is palindrome.
// Return the count of strings with
// no palindromic substring.
function numofstring(n, m)
{
if (n == 1)
return m;
if (n == 2)
return m * (m - 1);
return m * (m - 1) * Math.pow(m - 2, n - 2);
}
// Driver Code
let n = 2, m = 3;
document.write(numofstring(n, m));
// This code is contributed by code_hunt.
</script>
Output
6
Time Complexity: O(log n), for using of pow function where n is the given input.
Auxiliary Space: O(1), no extra space is required, so it is a constant.