Optimal sequence for AVL tree insertion (without any rotations)
Last Updated :
11 Jul, 2025
Given an array of integers, the task is to find the sequence in which these integers should be added to an AVL tree such that no rotations are required to balance the tree.
Examples :
Input : array = {1, 2, 3}
Output : 2 1 3
Input : array = {2, 4, 1, 3, 5, 6, 7}
Output : 4 2 6 1 3 5 7
Approach :
- Sort the given array of integers.
- Create the AVL tree from the sorted array by following the approach described here.
- Now, find the level order traversal of the tree which is the required sequence.
- Adding numbers in the sequence found in the previous step will always maintain the height balance property of all the nodes in the tree.
Below is the implementation of the above approach :
C++
// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
/* A Binary Tree node */
struct TNode {
int data;
struct TNode* left;
struct TNode* right;
};
struct TNode* newNode(int data);
/* Function to construct AVL tree
from a sorted array */
struct TNode* sortedArrayToBST(vector<int> arr, int start, int end)
{
/* Base Case */
if (start > end)
return NULL;
/* Get the middle element
and make it root */
int mid = (start + end) / 2;
struct TNode* root = newNode(arr[mid]);
/* Recursively construct the
left subtree and make it
left child of root */
root->left = sortedArrayToBST(arr, start, mid - 1);
/* Recursively construct the
right subtree and make it
right child of root */
root->right = sortedArrayToBST(arr, mid + 1, end);
return root;
}
/* Helper function that allocates
a new node with the given data
and NULL to the left and
the right pointers. */
struct TNode* newNode(int data)
{
struct TNode* node = new TNode();
node->data = data;
node->left = NULL;
node->right = NULL;
return node;
}
// This function is used for testing purpose
void printLevelOrder(TNode *root)
{
if (root == NULL) return;
queue<TNode *> q;
q.push(root);
while (q.empty() == false)
{
TNode *node = q.front();
cout << node->data << " ";
q.pop();
if (node->left != NULL)
q.push(node->left);
if (node->right != NULL)
q.push(node->right);
}
}
/* Driver program to
test above functions */
int main()
{
// Assuming the array is sorted
vector<int> arr = { 1, 2, 3, 4, 5, 6, 7 };
int n = arr.size();
/* Convert List to AVL tree */
struct TNode* root = sortedArrayToBST(arr, 0, n - 1);
printLevelOrder(root);
return 0;
}
Java
// Java implementation of the approach
import java.util.*;
class solution
{
/* A Binary Tree node */
static class TNode {
int data;
TNode left;
TNode right;
}
/* Function to con AVL tree
from a sorted array */
static TNode sortedArrayToBST(int arr[], int start, int end)
{
/* Base Case */
if (start > end)
return null;
/* Get the middle element
and make it root */
int mid = (start + end) / 2;
TNode root = newNode(arr[mid]);
/* Recursively construct the
left subtree and make it
left child of root */
root.left = sortedArrayToBST(arr, start, mid - 1);
/* Recursively construct the
right subtree and make it
right child of root */
root.right = sortedArrayToBST(arr, mid + 1, end);
return root;
}
/* Helper function that allocates
a new node with the given data
and null to the left and
the right pointers. */
static TNode newNode(int data)
{
TNode node = new TNode();
node.data = data;
node.left = null;
node.right = null;
return node;
}
// This function is used for testing purpose
static void printLevelOrder(TNode root)
{
if (root == null) return;
Queue<TNode > q= new LinkedList<TNode>();
q.add(root);
while (q.size()>0)
{
TNode node = q.element();
System.out.print( node.data + " ");
q.remove();
if (node.left != null)
q.add(node.left);
if (node.right != null)
q.add(node.right);
}
}
/* Driver program to
test above functions */
public static void main(String args[])
{
// Assuming the array is sorted
int arr[] = { 1, 2, 3, 4, 5, 6, 7 };
int n = arr.length;
/* Convert List to AVL tree */
TNode root = sortedArrayToBST(arr, 0, n - 1);
printLevelOrder(root);
}
}
//contributed by Arnab Kundu
Python3
# Python3 code to print order of
# insertion into AVL tree to
# ensure no rotations
# Tree Node
class Node:
def __init__(self, d):
self.data = d
self.left = None
self.right = None
# Function to convert sorted array
# to a balanced AVL Tree/BST
# Input : sorted array of integers
# Output: root node of balanced AVL Tree/BST
def sortedArrayToBST(arr):
if not arr:
return None
# Find middle and get its floor value
mid = int((len(arr)) / 2)
root = Node(arr[mid])
# Recursively construct the left
# and right subtree
root.left = sortedArrayToBST(arr[:mid])
root.right = sortedArrayToBST(arr[mid + 1:])
# Return the root of the
# constructed tree
return root
# A utility function to print the
# Level Order Traversal of AVL Tree
# using a Queue
def printLevelOrder(root):
if not root:
return
q = []
q.append(root)
# Keep printing the top element and
# adding to queue while it is not empty
while q != []:
node = q.pop(0)
print(node.data, end=" ")
# If left node exists, enqueue it
if node.left:
q.append(node.left)
# If right node exists, enqueue it
if node.right:
q.append(node.right)
# Driver Code
arr = [1, 2, 3, 4, 5, 6, 7]
root = sortedArrayToBST(arr)
printLevelOrder(root)
# This code is contributed
# by Adikar Bharath
C#
// C# implementation of the approach
using System;
using System.Collections.Generic;
class GFG
{
/* A Binary Tree node */
public class TNode
{
public int data;
public TNode left;
public TNode right;
}
/* Function to con AVL tree
from a sorted array */
static TNode sortedArrayToBST(int []arr,
int start, int end)
{
/* Base Case */
if (start > end)
return null;
/* Get the middle element
and make it root */
int mid = (start + end) / 2;
TNode root = newNode(arr[mid]);
/* Recursively construct the
left subtree and make it
left child of root */
root.left = sortedArrayToBST(arr, start, mid - 1);
/* Recursively construct the
right subtree and make it
right child of root */
root.right = sortedArrayToBST(arr, mid + 1, end);
return root;
}
/* Helper function that allocates
a new node with the given data
and null to the left and
the right pointers. */
static TNode newNode(int data)
{
TNode node = new TNode();
node.data = data;
node.left = null;
node.right = null;
return node;
}
// This function is used for testing purpose
static void printLevelOrder(TNode root)
{
if (root == null) return;
Queue<TNode > q = new Queue<TNode>();
q.Enqueue(root);
while (q.Count > 0)
{
TNode node = q.Peek();
Console.Write( node.data + " ");
q.Dequeue();
if (node.left != null)
q.Enqueue(node.left);
if (node.right != null)
q.Enqueue(node.right);
}
}
/* Driver code */
public static void Main()
{
// Assuming the array is sorted
int []arr = { 1, 2, 3, 4, 5, 6, 7 };
int n = arr.Length;
/* Convert List to AVL tree */
TNode root = sortedArrayToBST(arr, 0, n - 1);
printLevelOrder(root);
}
}
/* This code contributed by PrinciRaj1992 */
JavaScript
<script>
// Javascript implementation of the approach
/* A Binary Tree node */
class TNode
{
constructor()
{
this.data = 0;
this.left = null;
this.right = null;
}
}
/* Function to con AVL tree
from a sorted array */
function sortedArrayToBST(arr, start, end)
{
/* Base Case */
if (start > end)
return null;
/* Get the middle element
and make it root */
var mid = parseInt((start + end) / 2);
var root = newNode(arr[mid]);
/* Recursively construct the
left subtree and make it
left child of root */
root.left = sortedArrayToBST(arr, start, mid - 1);
/* Recursively construct the
right subtree and make it
right child of root */
root.right = sortedArrayToBST(arr, mid + 1, end);
return root;
}
/* Helper function that allocates
a new node with the given data
and null to the left and
the right pointers. */
function newNode(data)
{
var node = new TNode();
node.data = data;
node.left = null;
node.right = null;
return node;
}
// This function is used for testing purpose
function printLevelOrder(root)
{
if (root == null) return;
var q = [];
q.push(root);
while (q.length > 0)
{
var node = q[0];
document.write( node.data + " ");
q.shift();
if (node.left != null)
q.push(node.left);
if (node.right != null)
q.push(node.right);
}
}
/* Driver code */
// Assuming the array is sorted
var arr = [1, 2, 3, 4, 5, 6, 7];
var n = arr.length;
/* Convert List to AVL tree */
var root = sortedArrayToBST(arr, 0, n - 1);
printLevelOrder(root);
// This code is contributed by itsok.
</script>
Complexity Analysis:
- Time Complexity: O(N)
- Auxiliary Space: O(N)
Similar Reads
AVL Tree Data Structure An AVL tree defined as a self-balancing Binary Search Tree (BST) where the difference between heights of left and right subtrees for any node cannot be more than one. Balance Factor = left subtree height - right subtree heightFor a Balanced Tree(for every node): -1 ⤠Balance Factor ⤠1Example of an
4 min read
What is AVL Tree | AVL Tree meaning An AVL is a self-balancing Binary Search Tree (BST) where the difference between the heights of left and right subtrees of any node cannot be more than one. KEY POINTSIt is height balanced treeIt is a binary search treeIt is a binary tree in which the height difference between the left subtree and r
2 min read
Insertion in an AVL Tree AVL tree is a self-balancing Binary Search Tree (BST) where the difference between heights of left and right subtrees cannot be more than one for all nodes. Insertion in an AVL Tree follows the same basic rules as in a Binary Search Tree (BST):A new key is placed in its correct position based on BST
15+ min read
Insertion, Searching and Deletion in AVL trees containing a parent node pointer AVL tree is a self-balancing Binary Search Tree (BST) where the difference between heights of left and right subtrees cannot be more than one for all nodes. The insertion and deletion in AVL trees have been discussed in the previous article. In this article, insert, search, and delete operations are
15+ min read
Deletion in an AVL Tree We have discussed Insertion of AVL Tree. In this post, we will follow a similar approach for deletion.Steps to follow for deletion. To make sure that the given tree remains AVL after every deletion, we must augment the standard BST delete operation to perform some re-balancing. Following are two bas
15+ min read
How is an AVL tree different from a B-tree? AVL Trees: AVL tree is a self-balancing binary search tree in which each node maintain an extra factor which is called balance factor whose value is either -1, 0 or 1. B-Tree: A B-tree is a self - balancing tree data structure that keeps data sorted and allows searches, insertions, and deletions in
1 min read
Practice questions on Height balanced/AVL Tree AVL tree is binary search tree with additional property that difference between height of left sub-tree and right sub-tree of any node canât be more than 1. Here are some key points about AVL trees:If there are n nodes in AVL tree, minimum height of AVL tree is floor(log 2 n). If there are n nodes i
4 min read
AVL with duplicate keys Please refer below post before reading about AVL tree handling of duplicates. How to handle duplicates in Binary Search Tree?This is to augment AVL tree node to store count together with regular fields like key, left and right pointers. Insertion of keys 12, 10, 20, 9, 11, 10, 12, 12 in an empty Bin
15+ min read
Count greater nodes in AVL tree In this article we will see that how to calculate number of elements which are greater than given value in AVL tree. Examples: Input : x = 5 Root of below AVL tree 9 / \ 1 10 / \ \ 0 5 11 / / \ -1 2 6 Output : 4 Explanation: there are 4 values which are greater than 5 in AVL tree which are 6, 9, 10
15+ min read
Difference between Binary Search Tree and AVL Tree Binary Search Tree:A binary Search Tree is a node-based binary tree data structure that has the following properties: The left subtree of a node contains only nodes with keys lesser than the nodeâs key.The right subtree of a node contains only nodes with keys greater than the nodeâs key.The left and
2 min read