Python - kappa3 Distribution in Statistics Last Updated : 10 Jan, 2020 Comments Improve Suggest changes Like Article Like Report scipy.stats.kappa3() is an Kappa 3 continuous random variable that is defined with a standard format and some shape parameters to complete its specification. The probability density is defined in the standard form and the loc and scale parameters are used to shift and/or scale the distribution. Parameters : q : lower and upper tail probability x : quantiles loc : [optional]location parameter. Default = 0 scale : [optional]scale parameter. Default = 1 size : [tuple of ints, optional] shape or random variates. moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’). Results : kappa3 continuous random variable Code #1 : Creating kappa3 continuous random variable Python3 1== # importing library from scipy.stats import kappa3 numargs = kappa3.numargs a, b = 4.32, 3.18 rv = kappa3(a, b) print ("RV : \n", rv) Output : RV : scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9D51A5F48 Code #2 : Johnson SU continuous variates and probability distribution Python3 1== import numpy as np quantile = np.arange (0.01, 1, 0.1) # Random Variates R = kappa3.rvs(a, b, scale = 2, size = 10) print ("Random Variates : \n", R) Output : Random Variates : [5.52352397 4.77488722 5.6151088 5.46494471 3.7711133 4.89730708 3.21392979 8.8291956 3.47994212 3.28716187] Code #3 : Graphical Representation. Python3 1== import numpy as np import matplotlib.pyplot as plt distribution = np.linspace(0, np.minimum(rv.dist.b, 3)) print("Distribution : \n", distribution) plot = plt.plot(distribution, rv.pdf(distribution)) Output : Distribution : [0. 0.06122449 0.12244898 0.18367347 0.24489796 0.30612245 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449 0.67346939 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633 1.10204082 1.16326531 1.2244898 1.28571429 1.34693878 1.40816327 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714 2.20408163 2.26530612 2.32653061 2.3877551 2.44897959 2.51020408 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102 2.93877551 3. ] Code #4 : Varying Positional Arguments Python3 1== import matplotlib.pyplot as plt import numpy as np x = np.linspace(0, 5, 100) # Varying positional arguments y1 = kappa3.pdf(x, 1, 3) y2 = kappa3.pdf(x, 1, 4) plt.plot(x, y1, "*", x, y2, "r--") Output : Comment More infoAdvertise with us Next Article Python - kappa4 Distribution in Statistics M mathemagic Follow Improve Article Tags : Python Python scipy-stats-functions Practice Tags : python Similar Reads Python - kappa4 Distribution in Statistics scipy.stats.kappa4() is an Kappa 4 continuous random variable that is defined with a standard format and some shape parameters to complete its specification. The probability density is defined in the standard form and the loc and scale parameters are used to shift and/or scale the distribution. Para 2 min read Python - Laplace Distribution in Statistics scipy.stats.laplace() is a Laplace continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution. Parameters : q : lower and upper tail probability x : quantiles loc : 2 min read Python - Nakagami Distribution in Statistics scipy.stats.nakagami() is a Nakagami continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution. Parameters : q : lower and upper tail probability x : quantiles loc 2 min read Python - Pareto Distribution in Statistics scipy.stats.pareto() is a Pareto continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution. Parameters : q : lower and upper tail probability x : quantiles loc : [ 2 min read Python - ksone Distribution in Statistics scipy.stats.ksone() is a General Kolmogorov-Smirnov one-sided test that is defined with a standard format and some shape parameters to complete its specification. It is a statistical test for the finite sample size n. Parameters : q : lower and upper tail probability x : quantiles loc : [optional]lo 2 min read Python - Lomax Distribution in Statistics scipy.stats.lomax() is a Lomax (Pareto of the second kind) continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution. Parameters : q : lower and upper tail probabi 2 min read Like