numpy.bitwise_xor() in Python Last Updated : 29 Nov, 2018 Comments Improve Suggest changes Like Article Like Report numpy.bitwise_xor() function is used to Compute the bit-wise XOR of two array element-wise. This function computes the bit-wise XOR of the underlying binary representation of the integers in the input arrays. Syntax : numpy.bitwise_xor(arr1, arr2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, ufunc ‘bitwise_xor’) Parameters : arr1 : [array_like] Input array. arr2 : [array_like] Input array. out : [ndarray, optional] A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. **kwargs : Allows you to pass keyword variable length of argument to a function. It is used when we want to handle named argument in a function. where : [array_like, optional] True value means to calculate the universal functions(ufunc) at that position, False value means to leave the value in the output alone. Return : [ndarray or scalar] Result. This is a scalar if both x1 and x2 are scalars. Code #1 : Working Python # Python program explaining # bitwise_xor() function import numpy as geek in_num1 = 10 in_num2 = 11 print ("Input number1 : ", in_num1) print ("Input number2 : ", in_num2) out_num = geek.bitwise_xor(in_num1, in_num2) print ("bitwise_xor of 10 and 11 : ", out_num) Output : Input number1 : 10 Input number2 : 11 bitwise_xor of 10 and 11 : 1 Code #2 : Python # Python program explaining # bitwise_xor() function import numpy as geek in_arr1 = [2, 8, 125] in_arr2 = [3, 3, 115] print ("Input array1 : ", in_arr1) print ("Input array2 : ", in_arr2) out_arr = geek.bitwise_xor(in_arr1, in_arr2) print ("Output array after bitwise_xor: ", out_arr) Output : Input array1 : [2, 8, 125] Input array2 : [3, 3, 115] Output array after bitwise_xor: [ 1 11 14] Code #3 : Python # Python program explaining # bitwise_xor() function import numpy as geek in_arr1 = [True, False, True, False] in_arr2 = [False, False, True, True] print ("Input array1 : ", in_arr1) print ("Input array2 : ", in_arr2) out_arr = geek.bitwise_xor(in_arr1, in_arr2) print ("Output array after bitwise_xor: ", out_arr) Output : Input array1 : [True, False, True, False] Input array2 : [False, False, True, True] Output array after bitwise_xor: [ True False False True] Comment More infoAdvertise with us Next Article numpy.bitwise_xor() in Python J jana_sayantan Follow Improve Article Tags : Python Python-numpy Python numpy-Binary Operation Practice Tags : python Similar Reads numpy.bitwise_or() in Python numpy.bitwise_or()function is used to Compute the bit-wise OR of two array element-wise. This function computes the bit-wise OR of the underlying binary representation of the integers in the input arrays. Syntax : numpy.bitwise_or(arr1, arr2, /, out=None, *, where=True, casting='same_kind', order='K 2 min read numpy.bitwise_and() in Python numpy.bitwise_and() function is used to Compute the bit-wise AND of two array element-wise. This function computes the bit-wise AND of the underlying binary representation of the integers in the input arrays. Syntax : numpy.bitwise_and(arr1, arr2, /, out=None, *, where=True, casting='same_kind', ord 2 min read numpy.logical_xor() in Python numpy.logical_xor(arr1, arr2, out=None, where = True, casting = 'same_kind', order = 'K', dtype = None, ufunc 'logical_xor') : This is a logical function and it helps user to find out the truth value of arr1 XOR arr2 element-wise. Both the arrays must be of same shape. Parameters : arr1 : [array_lik 2 min read numpy.binary_repr() in Python numpy.binary_repr(number, width=None) function is used to represent binary form of the input number as a string. For negative numbers, if width is not given, a minus sign is added to the front. If width is given, the twoâs complement of the number is returned, with respect to that width. In a twoâs- 3 min read numpy.setxor1d() function in Python numpy.setxor1d() function find the set exclusive-or of two arrays and return the sorted, unique values that are in only one (not both) of the input arrays. Syntax : numpy.setxor1d(arr1, arr2, assume_unique = False) Parameters : arr1, arr2 : [array_like] Input arrays. assume_unique : [bool] If True, 1 min read Like