Queries to count frequencies of a given character in a given range of indices
Last Updated :
02 Feb, 2022
Given a string S of length N and an array Q[][] of queries in the form {l, r, y}. For each query, the task is to print the number of characters y present in the range [l, r].
Examples:
Input: S = "aabv", Q[][] = {{0, 3, 'a'}, {1, 2, 'b'}}
Output: 2 1
Explanation:
Query 1: Number of character 'a' present in the range [0, 3] is 2.
Query 2: Number of character 'b' present in the range [1, 2] is 1.
Input: S = "abcd", Q[][] = {{1, 3, 'c'}, {1, 1, 'b'}}
Output: 1 1
Explanation:
Query 1: Number of character 'c' present in the range [1, 3] is 1.
Query 2: Number of character 'b' present in the range [1, 1] is 1.
Naive Approach: The simplest approach is to traverse the string over the range [l, r] and increment the counter by 1 if the character at index i is equal to y for each query {l, r, y}. After traversing, print the counter for each query.
Time Complexity: O(N*Q)
Auxiliary Space: O(N)
Efficient Approach: The idea is to pre-compute the number of characters present in the range 1 to i for each character from 'a' to 'z' where 1 ? i ? N using Prefix Sum technique. Follow the steps below to solve the problem:
- Initialize an array dp[N+1][26] where dp[i][j] stores the number of characters (i+'a') present in the range [0, i].
- Now, Precompute the number of each character present in the range [1, i] where 1 ? i ? N by incrementing dp[i][j] by dp[i - 1][j] where 0 ? j < 26 and increment dp[i][S[j] - 'a'] by 1.
- For each query {l, r, y}, print the value of dp[r][y - 'a'] - dp[l - 1][y - 'a'] as the number of characters y present in the range [l, r].
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include<bits/stdc++.h>
using namespace std;
// Function to print count of char
// y present in the range [l, r]
void noOfChars(string s, char queries[][3], int q)
{
// Length of the string
int n = s.length();
// Stores the precomputed results
int dp[n + 1][26];
memset(dp, 0, sizeof(dp));
// Iterate the given string
for(int i = 0; i < n; i++)
{
// Increment dp[i][y-'a'] by 1
dp[i + 1][s[i]-'a']++;
// Pre-compute
for(int j = 0; j < 26; j++)
{
dp[i + 1][j] += dp[i][j];
}
}
// Traverse each query
for(int i = 0; i < q; i++)
{
int l = (int)queries[i][0];
int r = (int)queries[i][1];
int c = queries[i][2] - 'a';
// Print the result for
// each query
cout << dp[r][c] - dp[l - 1][c] << " ";
}
}
// Driver Code
int main()
{
// Given string
string S = "aabv";
// Given Queries
char queries[2][3] = {{ 1, 2, 'a' },{ 2, 3, 'b' }};
// Function Call
noOfChars(S, queries, 2);
return 0;
}
// This code is contributed by avanitrachhadiya2155
Java
// Java program for the above approach
import java.io.*;
class GFG {
// Function to print count of char
// y present in the range [l, r]
static void noOfChars(String s,
char[][] queries)
{
// Length of the string
int n = s.length();
// Stores the precomputed results
int dp[][] = new int[n + 1][26];
// Iterate the given string
for (int i = 0; i < n; i++) {
// Increment dp[i][y-'a'] by 1
dp[i + 1][s.charAt(i) - 'a']++;
// Pre-compute
for (int j = 0; j < 26; j++) {
dp[i + 1][j] += dp[i][j];
}
}
// Number of queries
int q = queries.length;
// Traverse each query
for (int i = 0; i < q; i++) {
int l = (int)queries[i][0];
int r = (int)queries[i][1];
int c = queries[i][2] - 'a';
// Print the result for
// each query
System.out.print(
dp[r][c] - dp[l - 1][c]
+ " ");
}
}
// Driver Code
public static void main(String[] args)
{
// Given string
String S = "aabv";
// Given Queries
char queries[][]
= new char[][] { { 1, 2, 'a' },
{ 2, 3, 'b' } };
// Function Call
noOfChars(S, queries);
}
}
Python3
# Python3 program for the above approach
# Function to print count of char
# y present in the range [l, r]
def noOfChars(s, queries):
# Length of the string
n = len(s)
# Stores the precomputed results
dp = [[0 for i in range(26)]
for i in range(n + 1)]
# Iterate the given string
for i in range(n):
# Increment dp[i][y-'a'] by 1
dp[i + 1][ord(s[i]) - ord('a')] += 1
# Pre-compute
for j in range(26):
dp[i + 1][j] += dp[i][j]
# Number of queries
q = len(queries)
# Traverse each query
for i in range(q):
l = queries[i][0]
r = queries[i][1]
c = ord(queries[i][2]) - ord('a')
# Print the result for
# each query
print(dp[r][c] - dp[l - 1][c], end = " ")
# Driver Code
if __name__ == '__main__':
# Given string
S = "aabv"
# Given Queries
queries = [ [ 1, 2, 'a' ],
[ 2, 3, 'b' ] ]
# Function Call
noOfChars(S, queries)
# This code is contributed by mohit kumar 29
C#
// C# program for the above approach
using System;
public class GFG {
// Function to print count of char
// y present in the range [l, r]
static void noOfChars(String s,
char[,] queries)
{
// Length of the string
int n = s.Length;
// Stores the precomputed results
int [,]dp = new int[n + 1, 26];
// Iterate the given string
for (int i = 0; i < n; i++) {
// Increment dp[i,y-'a'] by 1
dp[i + 1, s[i] - 'a']++;
// Pre-compute
for (int j = 0; j < 26; j++) {
dp[i + 1, j] += dp[i, j];
}
}
// Number of queries
int q = queries.GetLength(0);
// Traverse each query
for (int i = 0; i < q; i++) {
int l = (int)queries[i, 0];
int r = (int)queries[i, 1];
int c = queries[i, 2] - 'a';
// Print the result for
// each query
Console.Write(
dp[r, c] - dp[l - 1, c]
+ " ");
}
}
// Driver Code
public static void Main(String[] args)
{
// Given string
String S = "aabv";
// Given Queries
char [,]queries
= new char[,] { { (char)1, (char)2, 'a' },
{ (char)2, (char)3, 'b' } };
// Function Call
noOfChars(S, queries);
}
}
// This code is contributed by 29AjayKumar
JavaScript
<script>
// JavaScript program for the above approach
// Function to print count of char
// y present in the range [l, r]
function noOfChars(s,queries)
{
// Length of the string
var n = s.length;
// Stores the precomputed results
var dp =
Array(n+1).fill(0).map(x => Array(26).fill(0));
// Iterate the given string
for (var i = 0; i < n; i++) {
// Increment dp[i][y-'a'] by 1
dp[i + 1][s.charAt(i).charCodeAt(0) -
'a'.charCodeAt(0)]++;
// Pre-compute
for (var j = 0; j < 26; j++) {
dp[i + 1][j] += dp[i][j];
}
}
// Number of queries
var q = queries.length;
// Traverse each query
for (var i = 0; i < q; i++) {
var l =
String.fromCharCode(queries[i][0]).charCodeAt(0);
var r =
String.fromCharCode(queries[i][1]).charCodeAt(0);
var c =
queries[i][2].charCodeAt(0) - 'a'.charCodeAt(0);
// Print the result for
// each query
document.write(
dp[r][c] - dp[l - 1][c]
+ " ");
}
}
// Driver Code
// Given string
var S = "aabv";
// Given Queries
var queries
= [ [ 1, 2, 'a' ],
[ 2, 3, 'b' ] ];
// Function Call
noOfChars(S, queries);
// This code contributed by shikhasingrajput
</script>
Time Complexity: O(Q+N*26)
Auxiliary Space: O(N)