Subset Sum Problem in O(sum) space
Last Updated :
16 May, 2024
Given an array of non-negative integers and a value sum, determine if there is a subset of the given set with sum equal to given sum.
Examples:
Input: arr[] = {4, 1, 10, 12, 5, 2}, sum = 9
Output: TRUE
Explanation: {4, 5} is a subset with sum 9.
Input: arr[] = {1, 8, 2, 5}, sum = 4
Output: FALSE
Explanation: There exists no subset with sum 4.
We have discussed a Dynamic Programming based solution in the post "Dynamic Programming | Set 25 (Subset Sum Problem)".
Subset Sum Problem in O(sum) space using 2D array:
The solution discussed above requires O(n * sum) space and O(n * sum) time. We can optimize space. We create a boolean 2D array subset[2][sum+1]. Using bottom-up manner we can fill up this table. The idea behind using 2 in "subset[2][sum+1]" is that for filling a row only the values from previous row are required. So alternate rows are used either making the first one as current and second as previous or the first as previous and second as current.
Below is the implementation of the above approach:
C++
#include <iostream>
using namespace std;
bool isSubsetSum(int arr[], int n, int sum)
{
// The value of subset[i][j] will be true
// if there exists a subset of sum j in
// arr[0, 1, ...., i-1]
bool subset[n+1][sum + 1];
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= sum; j++) {
// A subset with sum 0 is always possible
if (j == 0)
subset[i][j] = true;
// If there exists no element no sum
// is possible
else if (i == 0)
subset[i][j] = false;
else if (arr[i - 1] <= j)
subset[i][j] = subset[i - 1][j - arr[i - 1]] || subset[i - 1][j];
else
subset[i][j] = subset[i - 1][j];
}
}
return subset[n][sum];
}
// Driver code
int main()
{
int arr[] = { 6, 2, 5 };
int sum = 7;
int n = sizeof(arr) / sizeof(arr[0]);
if (isSubsetSum(arr, n, sum) == true)
cout <<"There exists a subset with given sum";
else
cout <<"No subset exists with given sum";
return 0;
}
C
// Returns true if there exists a subset
// with given sum in arr[]
#include <stdio.h>
#include <stdbool.h>
bool isSubsetSum(int arr[], int n, int sum)
{
// The value of subset[i%2][j] will be true
// if there exists a subset of sum j in
// arr[0, 1, ...., i-1]
bool subset[2][sum + 1];
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= sum; j++) {
// A subset with sum 0 is always possible
if (j == 0)
subset[i % 2][j] = true;
// If there exists no element no sum
// is possible
else if (i == 0)
subset[i % 2][j] = false;
else if (arr[i - 1] <= j)
subset[i % 2][j] = subset[(i + 1) % 2]
[j - arr[i - 1]] || subset[(i + 1) % 2][j];
else
subset[i % 2][j] = subset[(i + 1) % 2][j];
}
}
return subset[n % 2][sum];
}
// Driver code
int main()
{
int arr[] = { 6, 2, 5 };
int sum = 7;
int n = sizeof(arr) / sizeof(arr[0]);
if (isSubsetSum(arr, n, sum) == true)
printf("There exists a subset with given sum");
else
printf("No subset exists with given sum");
return 0;
}
Java
// Java Program to get a subset with a
// with a sum provided by the user
public class Subset_sum {
// Returns true if there exists a subset
// with given sum in arr[]
static boolean isSubsetSum(int arr[], int n, int sum)
{
// The value of subset[i%2][j] will be true
// if there exists a subset of sum j in
// arr[0, 1, ...., i-1]
boolean subset[][] = new boolean[2][sum + 1];
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= sum; j++) {
// A subset with sum 0 is always possible
if (j == 0)
subset[i % 2][j] = true;
// If there exists no element no sum
// is possible
else if (i == 0)
subset[i % 2][j] = false;
else if (arr[i - 1] <= j)
subset[i % 2][j] = subset[(i + 1) % 2]
[j - arr[i - 1]] || subset[(i + 1) % 2][j];
else
subset[i % 2][j] = subset[(i + 1) % 2][j];
}
}
return subset[n % 2][sum];
}
// Driver code
public static void main(String args[])
{
int arr[] = { 1, 2, 5 };
int sum = 7;
int n = arr.length;
if (isSubsetSum(arr, n, sum) == true)
System.out.println("There exists a subset with" +
" given sum");
else
System.out.println("No subset exists with" +
" given sum");
}
}
// This code is contributed by Sumit Ghosh
Python
# Returns true if there exists a subset
# with given sum in arr[]
def isSubsetSum(arr, n, sum):
# The value of subset[i%2][j] will be true
# if there exists a subset of sum j in
# arr[0, 1, ...., i-1]
subset = [[False for j in range(sum + 1)] for i in range(3)]
for i in range(n + 1):
for j in range(sum + 1):
# A subset with sum 0 is always possible
if (j == 0):
subset[i % 2][j] = True
# If there exists no element no sum
# is possible
elif (i == 0):
subset[i % 2][j] = False
elif (arr[i - 1] <= j):
subset[i % 2][j] = subset[(i + 1) % 2][j - arr[i - 1]] or subset[(i + 1)
% 2][j]
else:
subset[i % 2][j] = subset[(i + 1) % 2][j]
return subset[n % 2][sum]
# Driver code
arr = [6, 2, 5]
sum = 7
n = len(arr)
if (isSubsetSum(arr, n, sum) == True):
print("There exists a subset with given sum")
else:
print("No subset exists with given sum")
# This code is contributed by Sachin Bisht
C#
// C# Program to get a subset with a
// with a sum provided by the user
using System;
public class Subset_sum {
// Returns true if there exists a subset
// with given sum in arr[]
static bool isSubsetSum(int []arr, int n, int sum)
{
// The value of subset[i%2][j] will be true
// if there exists a subset of sum j in
// arr[0, 1, ...., i-1]
bool [,]subset = new bool[2,sum + 1];
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= sum; j++) {
// A subset with sum 0 is always possible
if (j == 0)
subset[i % 2,j] = true;
// If there exists no element no sum
// is possible
else if (i == 0)
subset[i % 2,j] = false;
else if (arr[i - 1] <= j)
subset[i % 2,j] = subset[(i + 1) % 2,j - arr[i - 1]] || subset[(i + 1) % 2,j];
else
subset[i % 2,j] = subset[(i + 1) % 2,j];
}
}
return subset[n % 2,sum];
}
// Driver code
public static void Main()
{
int []arr = { 1, 2, 5 };
int sum = 7;
int n = arr.Length;
if (isSubsetSum(arr, n, sum) == true)
Console.WriteLine("There exists a subset with" +
"given sum");
else
Console.WriteLine("No subset exists with" +
"given sum");
}
}
// This code is contributed by Ryuga
JavaScript
<script>
// Javascript Program to get a subset with a
// with a sum provided by the user
// Returns true if there exists a subset
// with given sum in arr[]
function isSubsetSum(arr, n, sum)
{
// The value of subset[i%2][j] will be true
// if there exists a subset of sum j in
// arr[0, 1, ...., i-1]
let subset = new Array(2);
// Loop to create 2D array using 1D array
for (var i = 0; i < subset.length; i++) {
subset[i] = new Array(2);
}
for (let i = 0; i <= n; i++) {
for (let j = 0; j <= sum; j++) {
// A subset with sum 0 is always possible
if (j == 0)
subset[i % 2][j] = true;
// If there exists no element no sum
// is possible
else if (i == 0)
subset[i % 2][j] = false;
else if (arr[i - 1] <= j)
subset[i % 2][j] = subset[(i + 1) % 2]
[j - arr[i - 1]] || subset[(i + 1) % 2][j];
else
subset[i % 2][j] = subset[(i + 1) % 2][j];
}
}
return subset[n % 2][sum];
}
// driver program
let arr = [ 1, 2, 5 ];
let sum = 7;
let n = arr.length;
if (isSubsetSum(arr, n, sum) == true)
document.write("There exists a subset with" +
"given sum");
else
document.write("No subset exists with" +
"given sum");
// This code is contributed by code_hunt.
</script>
PHP
<?php
// Returns true if there exists a subset
// with given sum in arr[]
function isSubsetSum($arr, $n, $sum)
{
// The value of subset[i%2][j] will be
// true if there exists a subset of
// sum j in arr[0, 1, ...., i-1]
$subset[2][$sum + 1] = array();
for ($i = 0; $i <= $n; $i++)
{
for ($j = 0; $j <= $sum; $j++)
{
// A subset with sum 0 is
// always possible
if ($j == 0)
$subset[$i % 2][$j] = true;
// If there exists no element no
// sum is possible
else if ($i == 0)
$subset[$i % 2][$j] = false;
else if ($arr[$i - 1] <= $j)
$subset[$i % 2][$j] = $subset[($i + 1) % 2]
[$j - $arr[$i - 1]] ||
$subset[($i + 1) % 2][$j];
else
$subset[$i % 2][$j] = $subset[($i + 1) % 2][$j];
}
}
return $subset[$n % 2][$sum];
}
// Driver code
$arr = array( 6, 2, 5 );
$sum = 7;
$n = sizeof($arr);
if (isSubsetSum($arr, $n, $sum) == true)
echo ("There exists a subset with given sum");
else
echo ("No subset exists with given sum");
// This code is contributed by Sach_Code
?>
OutputThere exists a subset with given sum
Subset Sum Problem in O(sum) space using 1D array:
To further reduce space complexity, we create a boolean 1D array subset[sum+1]. Using bottom-up manner we can fill up this table. The idea is that we can check if the sum till position "i" is possible then if the current element in the array at position j is x, then sum i+x is also possible. We traverse the sum array from back to front so that we don't count any element twice.
Below is the implementation of the above approach:
C++
#include <iostream>
using namespace std;
bool isPossible(int elements[], int sum, int n)
{
int dp[sum + 1] = { 0 };
// Initializing with 1 as sum 0 is
// always possible
dp[0] = 1;
// Loop to go through every element of
// the elements array
for (int i = 0; i < n; i++) {
// To change the values of all possible sum
// values to 1
for (int j = sum; j >= elements[i]; j--) {
if (dp[j - elements[i]] == 1)
dp[j] = 1;
}
}
// If sum is possible then return 1
if (dp[sum] == 1)
return true;
return false;
}
// Driver code
int main()
{
int elements[] = { 6, 2, 5 };
int n = sizeof(elements) / sizeof(elements[0]);
int sum = 7;
if (isPossible(elements, sum, n))
cout << ("YES");
else
cout << ("NO");
return 0;
}
// This code is contributed by Potta Lokesh
// This code is modified by Susobhan Akhuli
Java
import java.io.*;
import java.util.*;
class GFG {
static boolean isPossible(int elements[], int sum)
{
int dp[] = new int[sum + 1];
Arrays.fill(dp, 0);
// initializing with 1 as sum 0 is always possible
dp[0] = 1;
// loop to go through every element of the elements
// array
for (int i = 0; i < elements.length; i++) {
// to change the values of all possible sum
// values to 1
for (int j = sum; j >= elements[i]; j--) {
if (dp[j - elements[i]] == 1)
dp[j] = 1;
}
}
// if sum is possible then return 1
if (dp[sum] == 1)
return true;
return false;
}
public static void main(String[] args) throws Exception
{
int elements[] = { 6, 2, 5 };
int sum = 7;
if (isPossible(elements, sum))
System.out.println("YES");
else
System.out.println("NO");
}
}
// This code is modified by Susobhan Akhuli
Python
def isPossible(elements, target):
dp = [False]*(target+1)
# initializing with 1 as sum 0 is always possible
dp[0] = True
# loop to go through every element of the elements array
for ele in elements:
# to change the value o all possible sum values to True
for j in range(target, ele - 1, -1):
if dp[j - ele]:
dp[j] = True
# If target is possible return True else False
return dp[target]
# Driver code
arr = [6, 2, 5]
target = 7
if isPossible(arr, target):
print("YES")
else:
print("NO")
# The code is contributed by Arpan.
C#
using System;
class GFG {
static Boolean isPossible(int[] elements, int sum)
{
int[] dp = new int[sum + 1];
Array.Fill(dp, 0);
// initializing with 1 as sum 0 is always possible
dp[0] = 1;
// loop to go through every element of the elements
// array
for (int i = 0; i < elements.Length; i++) {
// to change the values of all possible sum
// values to 1
for (int j = sum; j >= elements[i]; j--) {
if (dp[j - elements[i]] == 1)
dp[j] = 1;
}
}
// if sum is possible then return 1
if (dp[sum] == 1)
return true;
return false;
}
// Driver code
public static void Main(String[] args)
{
int[] elements = { 6, 2, 5 };
int sum = 7;
if (isPossible(elements, sum))
Console.Write("YES");
else
Console.Write("NO");
}
}
// This code is contributed by shivanisinghss2110
// This code is modified by Susobhan Akhuli
JavaScript
<script>
function isPossible(elements, sum)
{
var dp = Array(sum+1).fill(0);
// initializing with 1 as sum 0 is always possible
dp[0] = 1;
// loop to go through every element of the elements
// array
for (var i = 0; i < elements.length; i++)
{
// to change the values of all possible sum
// values to 1
for (var j = sum; j >= elements[i]; j--) {
if (dp[j - elements[i]] == 1)
dp[j] = 1;
}
}
// if sum is possible then return 1
if (dp[sum] == 1)
return true;
return false;
}
var elements = [ 6, 2, 5 ];
var sum = 7;
if (isPossible(elements, sum))
document.write("YES");
else
document.write("NO");
// This code is contributed by shivanisinghss2110
// This code is modified by Susobhan Akhuli
</script>
Time Complexity: O(N*K) where N is the number of elements in the array and K is total sum.
Auxiliary Space: O(K), since K extra space has been taken.
Similar Reads
Subset Sum Problem Given an array arr[] of non-negative integers and a value sum, the task is to check if there is a subset of the given array whose sum is equal to the given sum. Examples: Input: arr[] = [3, 34, 4, 12, 5, 2], sum = 9Output: TrueExplanation: There is a subset (4, 5) with sum 9.Input: arr[] = [3, 34, 4
15+ min read
Subset sum in Different languages
Python Program for Subset Sum Problem | DP-25Write a Python program for a given set of non-negative integers and a value sum, the task is to check if there is a subset of the given set whose sum is equal to the given sum. Examples: Input: set[] = {3, 34, 4, 12, 5, 2}, sum = 9Output: TrueExplanation: There is a subset (4, 5) with sum 9. Input:
7 min read
Java Program for Subset Sum Problem | DP-25Write a Java program for a given set of non-negative integers and a value sum, the task is to check if there is a subset of the given set whose sum is equal to the given sum. Examples: Input: set[] = {3, 34, 4, 12, 5, 2}, sum = 9Output: TrueExplanation: There is a subset (4, 5) with sum 9. Input: se
8 min read
C Program for Subset Sum Problem | DP-25Write a C program for a given set of non-negative integers and a value sum, the task is to check if there is a subset of the given set whose sum is equal to the given sum. Examples: Input: set[] = {3, 34, 4, 12, 5, 2}, sum = 9Output: TrueExplanation: There is a subset (4, 5) with sum 9. Input: set[]
8 min read
PHP Program for Subset Sum Problem | DP-25Write a PHP program for a given set of non-negative integers and a value sum, the task is to check if there is a subset of the given set whose sum is equal to the given sum. Examples: Input: set[] = {3, 34, 4, 12, 5, 2}, sum = 9Output: TrueExplanation: There is a subset (4, 5) with sum 9. Input: set
7 min read
C# Program for Subset Sum Problem | DP-25Write a C# program for a given set of non-negative integers and a value sum, the task is to check if there is a subset of the given set whose sum is equal to the given sum. Examples: Input: set[] = {3, 34, 4, 12, 5, 2}, sum = 9Output: TrueExplanation: There is a subset (4, 5) with sum 9. Input: set[
8 min read
Subset Sum Problem using Backtracking Given a set[] of non-negative integers and a value sum, the task is to print the subset of the given set whose sum is equal to the given sum. Examples:Â Input:Â set[] = {1,2,1}, sum = 3Output:Â [1,2],[2,1]Explanation:Â There are subsets [1,2],[2,1] with sum 3. Input:Â set[] = {3, 34, 4, 12, 5, 2}, sum =
8 min read
Print all subsets with given sum Given an array arr[] of non-negative integers and an integer target. The task is to print all subsets of the array whose sum is equal to the given target. Note: If no subset has a sum equal to target, print -1.Examples:Input: arr[] = [5, 2, 3, 10, 6, 8], target = 10Output: [ [5, 2, 3], [2, 8], [10]
15+ min read
Subset Sum Problem in O(sum) space Given an array of non-negative integers and a value sum, determine if there is a subset of the given set with sum equal to given sum. Examples: Input: arr[] = {4, 1, 10, 12, 5, 2}, sum = 9Output: TRUEExplanation: {4, 5} is a subset with sum 9. Input: arr[] = {1, 8, 2, 5}, sum = 4Output: FALSE Explan
13 min read
Subset Sum is NP Complete Prerequisite: NP-Completeness, Subset Sum Problem Subset Sum Problem: Given N non-negative integers a1...aN and a target sum K, the task is to decide if there is a subset having a sum equal to K. Explanation: An instance of the problem is an input specified to the problem. An instance of the subset
5 min read
Minimum Subset sum difference problem with Subset partitioning Given a set of N integers with up to 40 elements, the task is to partition the set into two subsets of equal size (or the closest possible), such that the difference between the sums of the subsets is minimized. If the size of the set is odd, one subset will have one more element than the other. If
13 min read
Maximum subset sum such that no two elements in set have same digit in them Given an array of N elements. Find the subset of elements which has maximum sum such that no two elements in the subset has common digit present in them.Examples: Input : array[] = {22, 132, 4, 45, 12, 223} Output : 268 Maximum Sum Subset will be = {45, 223} . All possible digits are present except
12 min read
Find all distinct subset (or subsequence) sums of an array Given an array arr[] of size n, the task is to find a distinct sum that can be generated from the subsets of the given sets and return them in increasing order. It is given that the sum of array elements is small.Examples: Input: arr[] = [1, 2]Output: [0, 1, 2, 3]Explanation: Four distinct sums can
15+ min read
Subset sum problem where Array sum is at most N Given an array arr[] of size N such that the sum of all the array elements does not exceed N, and array queries[] containing Q queries. For each query, the task is to find if there is a subset of the array whose sum is the same as queries[i]. Examples: Input: arr[] = {1, 0, 0, 0, 0, 2, 3}, queries[]
10 min read