Suffix Sum ArrayGiven an array arr[] of size N, the task is to compute and return its suffix sum array.
Suffix Sum is a precomputation technique in which the sum of all the elements of the original array from an index i till the end of the array is computed.
Therefore, this suffix sum array will be created using the relation:
suffixSum[i] = arr[i] + arr[i+1] + arr[i+2] … +arr[n-1]
Examples:
Input: arr[] = { 15, 10, 25, 5, 10, 20 } , N = 6
Output: suffixSum[] = { 85, 70, 60, 35, 30, 20}
Explanation: While traversing the array from back, keep adding element from the back with element at current index.
suffixSum[5] = 20,
suffixSum[4] =suffixSum[5] + arr[4] = 20+10 = 30 ,
suffixSum[3] = suffixSum[4] + arr[3] = 30+5 = 35 and so on.

Input: arr[] = {10, 14, 16, 20}, n = 6
Output: suffixSum[] = {60, 50, 36, 20}
Explanation: suffixSum[3] = 20,
suffixSum[2] =suffixSum[3] + arr[2] = 20+16 = 36 ,
suffixSum[1] = suffixSum[2] + arr[1] = 36+14 = 40 and so on.
Naive Approach:
The naive approach to solve the problem is to traverse each element of the array and for each element calculate the sum of remaining elements to its right including itself using another loop.
Algorithm:
- Initialize an empty result vector suffixSum of size N with all elements as 0.
- Traverse the array arr[] from left to right using a for loop.
- For each i-th element in arr[], initialize a variable sum to 0.
- Traverse the subarray arr[i:N] from i-th index to N-th index using another for loop.
- For each j-th element in the subarray arr[i:N], add the value of arr[j] to the variable sum.
- After the inner loop is completed, set the i-th index of suffixSum vector as the value of sum.
- Continue the outer loop until all elements of arr[] have been traversed.
- The suffixSum vector now contains the suffix sum array for the input array arr[].
- Return the suffixSum vector.
Below is the implementation of the approach:
C++
// C++ code for the approach
#include<bits/stdc++.h>
using namespace std;
// Driver's code
int main() {
vector<int> arr = { 10, 14, 16, 20 };
int n = arr.size();
// initialize the suffix sum array with all elements as 0
vector<int> suffixSum(n, 0);
for(int i=0; i<n; i++) {
// calculate the sum of remaining elements to the right
for(int j=i; j<n; j++) {
suffixSum[i] += arr[j];
}
}
// Printing the computed suffix sum array
cout << "Suffix sum array: ";
for(int i=0; i<suffixSum.size(); i++) {
cout << suffixSum[i] << " ";
}
return 0;
}
Java
import java.util.ArrayList;
import java.util.List;
public class SuffixSumArray {
public static void main(String[] args) {
List<Integer> arr = List.of(10, 14, 16, 20);
int n = arr.size();
// Initialize the suffix sum array with all elements as 0
List<Integer> suffixSum = new ArrayList<>(n);
for (int i = 0; i < n; i++) {
suffixSum.add(0);
}
for (int i = 0; i < n; i++) {
// Calculate the sum of remaining elements to the right
for (int j = i; j < n; j++) {
suffixSum.set(i, suffixSum.get(i) + arr.get(j));
}
}
// Printing the computed suffix sum array
System.out.print("Suffix sum array: ");
for (int i = 0; i < suffixSum.size(); i++) {
System.out.print(suffixSum.get(i) + " ");
}
}
}
Python3
arr = [10, 14, 16, 20]
n = len(arr)
# Initialize the suffix sum array with all elements as 0
suffix_sum = [0] * n
for i in range(n):
# Calculate the sum of remaining elements to the right
for j in range(i, n):
suffix_sum[i] += arr[j]
# Printing the computed suffix sum array
print("Suffix sum array:", suffix_sum)
C#
using System;
using System.Collections.Generic;
class Program
{
static void Main()
{
List<int> arr = new List<int> { 10, 14, 16, 20 };
int n = arr.Count;
// Initialize the suffix sum array with all elements as 0
List<int> suffixSum = new List<int>(new int[n]);
for (int i = 0; i < n; i++)
{
// Calculate the sum of remaining elements to the right
for (int j = i; j < n; j++)
{
suffixSum[i] += arr[j];
}
}
// Printing the computed suffix sum array
Console.Write("Suffix sum array: ");
foreach (int sum in suffixSum)
{
Console.Write(sum + " ");
}
Console.WriteLine();
}
}
JavaScript
// Function to compute the suffix sum array
function computeSuffixSum(arr) {
const n = arr.length;
const suffixSum = new Array(n).fill(0);
for (let i = 0; i < n; i++) {
// Calculate the sum of remaining elements to the right
for (let j = i; j < n; j++) {
suffixSum[i] += arr[j];
}
}
return suffixSum;
}
// Main driver function
function main() {
const arr = [10, 14, 16, 20];
// Compute the suffix sum array
const suffixSum = computeSuffixSum(arr);
// Printing the computed suffix sum array
console.log("Suffix sum array:", suffixSum.join(" "));
}
// Call the main function
main();
OutputSuffix sum array: 60 50 36 20
Time Complexity: O(n*n) where n is size of input array. This is because two nested loops are executing.
Auxiliary Space: O(N), to store the suffix sum array.
Approach: To fill the suffix sum array, we run through index N-1 to 0 and keep on adding the current element with the previous value in the suffix sum array.
- Create an array of size N to store the suffix sum.
- Initialize the last element of the suffix sum array with the last element of the original array
suffixSum[n-1] = arr[n-1] - Traverse the original array from N-2 to 0
- For each index i find the suffix sum and store it at suffixSum[i]
- suffixSum[i] = suffixSum[i + 1] + arr[i]
- Return the computed suffix sum array.
Below is the implementation of the above approach to create a suffix sum array:
C++
// C++ program for Implementing
// suffix sum array
#include <bits/stdc++.h>
using namespace std;
// Function to create suffix sum array
vector<int> createSuffixSum(vector<int> arr, int n)
{
// Create an array to store the suffix sum
vector<int> suffixSum(n, 0);
// Initialize the last element of
// suffix sum array with last element
// of original array
suffixSum[n - 1] = arr[n - 1];
// Traverse the array from n-2 to 0
for (int i = n - 2; i >= 0; i--)
// Adding current element
// with previous element from back
suffixSum[i] = suffixSum[i + 1] + arr[i];
// Return the computed suffixSum array
return suffixSum;
}
// Driver Code
int main()
{
vector<int> arr = { 10, 14, 16, 20 };
int N = arr.size();
// Function call to fill suffix sum array
vector<int> suffixSum = createSuffixSum(arr, N);
// Printing the computed suffix sum array
cout << "Suffix sum array: ";
for (int i = 0; i < N; i++)
cout << suffixSum[i] << " ";
}
Java
// Java program for Implementing
// suffix sum array
import java.util.*;
public class GFG {
// Function to create suffix sum array
static int[] createSuffixSum(int[] arr, int n)
{
// Create an array to store the suffix sum
int[] suffixSum = new int[n];
for (int i = 0; i < n; i++) {
suffixSum[i] = 0;
}
// Initialize the last element of
// suffix sum array with last element
// of original array
suffixSum[n - 1] = arr[n - 1];
// Traverse the array from n-2 to 0
for (int i = n - 2; i >= 0; i--)
// Adding current element
// with previous element from back
suffixSum[i] = suffixSum[i + 1] + arr[i];
// Return the computed suffixSum array
return suffixSum;
}
// Driver Code
public static void main(String args[])
{
int[] arr = { 10, 14, 16, 20 };
int N = arr.length;
// Function call to fill suffix sum array
int[] suffixSum = createSuffixSum(arr, N);
// Printing the computed suffix sum array
System.out.print("Suffix sum array: ");
for (int i = 0; i < N; i++)
System.out.print(suffixSum[i] + " ");
}
}
// This code is contributed by Samim Hossain Mondal.
Python3
# python3 program for Implementing
# suffix sum array
# Function to create suffix sum array
def createSuffixSum(arr, n):
# Create an array to store the suffix sum
suffixSum = [0 for _ in range(n)]
# Initialize the last element of
# suffix sum array with last element
# of original array
suffixSum[n - 1] = arr[n - 1]
# Traverse the array from n-2 to 0
for i in range(n-2, -1, -1):
# Adding current element
# with previous element from back
suffixSum[i] = suffixSum[i + 1] + arr[i]
# Return the computed suffixSum array
return suffixSum
# Driver Code
if __name__ == "__main__":
arr = [10, 14, 16, 20]
N = len(arr)
# Function call to fill suffix sum array
suffixSum = createSuffixSum(arr, N)
# Printing the computed suffix sum array
print("Suffix sum array: ", end="")
for i in range(0, N):
print(suffixSum[i], end=" ")
# This code is contributed by rakeshsahni
C#
// C# program for Implementing
// suffix sum array
using System;
class GFG {
// Function to create suffix sum array
static int[] createSuffixSum(int[] arr, int n)
{
// Create an array to store the suffix sum
int[] suffixSum = new int[n];
for (int i = 0; i < n; i++) {
suffixSum[i] = 0;
}
// Initialize the last element of
// suffix sum array with last element
// of original array
suffixSum[n - 1] = arr[n - 1];
// Traverse the array from n-2 to 0
for (int i = n - 2; i >= 0; i--)
// Adding current element
// with previous element from back
suffixSum[i] = suffixSum[i + 1] + arr[i];
// Return the computed suffixSum array
return suffixSum;
}
// Driver Code
public static void Main()
{
int[] arr = { 10, 14, 16, 20 };
int N = arr.Length;
// Function call to fill suffix sum array
int[] suffixSum = createSuffixSum(arr, N);
// Printing the computed suffix sum array
Console.Write("Suffix sum array: ");
for (int i = 0; i < N; i++)
Console.Write(suffixSum[i] + " ");
}
}
// This code is contributed by Samim Hossain Mondal.
JavaScript
<script>
// JavaScript code for the above approach
// Function to create suffix sum array
function createSuffixSum(arr, n)
{
// Create an array to store the suffix sum
let suffixSum = new Array(n).fill(0);
// Initialize the last element of
// suffix sum array with last element
// of original array
suffixSum[n - 1] = arr[n - 1];
// Traverse the array from n-2 to 0
for (let i = n - 2; i >= 0; i--)
// Adding current element
// with previous element from back
suffixSum[i] = suffixSum[i + 1] + arr[i];
// Return the computed suffixSum array
return suffixSum;
}
// Driver Code
let arr = [10, 14, 16, 20];
let N = arr.length;
// Function call to fill suffix sum array
let suffixSum = createSuffixSum(arr, N);
// Printing the computed suffix sum array
document.write("Suffix sum array: ")
for (let i = 0; i < N; i++)
document.write(suffixSum[i] + " ");
// This code is contributed by Potta Lokesh
</script>
OutputSuffix sum array: 60 50 36 20
Time Complexity: O(N), to traverse the original array for computing suffix sum.
Auxiliary Space: O(N), to store the suffix sum array.
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Non-linear Components In electrical circuits, Non-linear Components are electronic devices that need an external power source to operate actively. Non-Linear Components are those that are changed with respect to the voltage and current. Elements that do not follow ohm's law are called Non-linear Components. Non-linear Co
11 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Dijkstra's Algorithm to find Shortest Paths from a Source to all Given a weighted undirected graph represented as an edge list and a source vertex src, find the shortest path distances from the source vertex to all other vertices in the graph. The graph contains V vertices, numbered from 0 to V - 1.Note: The given graph does not contain any negative edge. Example
12 min read