
Informatics 1
Functional Programming Lectures 15 and 16

IO and Monads

Don Sannella
University of Edinburgh

Part I

The Mind-Body Problem

dts
Typewritten Text
Everything in Haskell is "pure" in the sense of having no SIDE EFFECTS.
A side effect is something that happens "off to the side" during evaluation - input/output, change of state, etc.

dts
Typewritten Text
A function in Java, C etc. might not be a real function - it might give different results when applied twice to the same value,
e.g. because the result is dependent on input from the keyboard, or on the date. Then the order of evaluation matters.
If parts of the computation are done in parallel, then their relative timings can affect the result.

dts
Typewritten Text
So side effects make things very complicated. But pure functions can be very inconvenient.
How do I get Haskell to DO SOMETHING - print, draw a picture, etc.?

The Mind-Body Problem

dts
Typewritten Text
Philosphers worried about the connection between THOUGHTS (mind) and ACTIONS (body). Where is the connection?
Descartes: the pineal gland (teardrop-shaped object in picture) is the connection between the soul (mind)
and the brain/nerves (connected to sensory organs and muscles).
Haskell has something like a pineal gland, to make the connection between thinking (computation) and acting.

Part II

Commands

Print a character
putChar :: Char -> IO ()

For instance,

putChar ’!’

denotes the command that, if it is ever performed, will print an exclamation mark.

dts
Typewritten Text
Think of IO () as the type of COMMANDS.
() is the type of 0-tuples. The only value of type () is the 0-tuple, also written ().
putChar yields a command. It doesn't PERFORM the command, just PRODUCES it.
Production of commands is purely functional.

Combine two commands
(>>) :: IO () -> IO () -> IO ()

For instance,

putChar ’?’ >> putChar ’!’

denotes the command that, if it is ever performed, prints a question mark followed
by an exclamation mark.

dts
Typewritten Text
>> (pronounced "then") combines two commands sequentially.
>> is associative but not commutative. Its identity is the command that does nothing.

Do nothing
done :: IO ()

The term done doesn’t actually do nothing; it just specifies the command that, if
it is ever performed, won’t do anything. (Compare thinking about doing nothing
to actually doing nothing: they are distinct enterprises.)

dts
Typewritten Text
done is the identity for >>.
c >> done = c = done >> c

Print a string
putStr :: String -> IO ()
putStr [] = done
putStr (x:xs) = putChar x >> putStr xs

So putStr "?!" is equivalent to

putChar ’?’ >> (putChar ’!’ >> done)

and both of these denote a command that, if it is ever performed, prints a question
mark followed by an exclamation mark.

dts
Typewritten Text
putStr produces a command that prints a string.

Higher-order functions
More compactly, we can define putStr as follows.

putStr :: String -> IO ()
putStr = foldr (>>) done . map putChar

The operator >> has identity done and is associative.

m >> done = m
done >> m = m
(m >> n) >> o = m >> (n >> o)

dts
Typewritten Text
Here's how we can define putStr more compactly.
You can use all of the features of Haskell to produce commands.

Main
By now you may be desperate to know how is a command ever performed? Here
is the file Confused.hs:

module Confused where

main :: IO ()
main = putStr "?!"

Running this program prints an indicator of perplexity:

[melchior]dts: runghc Confused.hs
?![melchior]dts:

Thus main is the link from Haskell’s mind to Haskell’s body — the analogue of
Descartes’s pineal gland.

dts
Typewritten Text
This is enough, because we can make arbitrarily large combinations of things into a single command.

Print a string followed by a newline
putStrLn :: String -> IO ()
putStrLn xs = putStr xs >> putChar ’\n’

Here is the file ConfusedLn.hs:

module ConfusedLn where

main :: IO ()
main = putStrLn "?!"

This prints its result more neatly:

[melchior]dts: runghc ConfusedLn.hs
?!
[melchior]dts:

dts
Typewritten Text
ghci evaluates expression and then uses show to display the resulting value.
For commands, show performs the command. So you don't need to use runghc.

Part III

Equational reasoning

Equational reasoning lost
In languages with side effects, this program prints “haha” as a side effect.

print "ha"; print "ha"

But this program only prints “ha” as a side effect.

let x = print "ha" in x; x

This program again prints “haha” as a side effect.

let f () = print "ha" in f (); f ()

dts
Typewritten Text
Side effects make it harder to reason about programs.
Here is an example of what happens in a language (not Haskell) with side effects.

dts
Typewritten Text
The value x of print "ha" is unimportant.
It's the side effect that matters.

dts
Typewritten Text
Each evaluation of f () produces the side effect.

Equational reasoning regained
In Haskell, the term

(1+2) * (1+2)

and the term

let x = 1+2 in x * x

are equivalent (and both evaluate to 9).

In Haskell, the term

putStr "ha" >> putStr "ha"

and the term

let m = putStr "ha" in m >> m

are also entirely equivalent (and both print "haha").

dts
Typewritten Text
In Haskell, the simple equivalence rule works, even with commands that involve printing things.
You can always use a variable to factor out a common subexpression without changing the meaning.

Part IV

Commands with values

Read a character
Previously, we wrote IO () for the type of commands that yield no value.

Here, () is the trivial type that contains just one value, which is also written ().

We write IO Char for the type of commands that yield a value of type Char.

Here is a command to read a character.

getChar :: IO Char

Performing the command getChar when the input contains "abc" yields the
value ’a’ and remaining input "bc".

Do nothing and return a value
More generally, we write IO a for commands that return a value of type a.

The command

return :: a -> IO a

is similar to done, in that it does nothing, but it also returns the given value.

Performing the command

return [] :: IO String

when the input contains "bc" yields the value [] and an unchanged input "bc".

dts
Typewritten Text
return is useful when combined with other commands - we'll see how in a minute.

Combining commands with values
We combine command with an operator written >>= and pronounced “bind”.

(>>=) :: IO a -> (a -> IO b) -> IO b

For example, performing the command

getChar >>= \x -> putChar (toUpper x)

when the input is "abc" produces the output "A", and the remaining input is
"bc".

dts
Typewritten Text
>>= is a generalisation of >> which handles the values produced when commands are performed.

The “bind” operator in detail
(>>=) :: IO a -> (a -> IO b) -> IO b

If

m :: IO a

is a command yielding a value of type a, and

k :: a -> IO b

is a function from a value of type a to a command yielding a value of type b, then

m >>= k :: IO b

is the command that, if it is ever performed, behaves as follows:

first perform command m yielding a value x of type a;
then perform command k x yielding a value y of type b;

then yield the final value y.

dts
Typewritten Text
Performing this command performs m and then k.
The rest is about passing a value from m to k, and the fact that k is affected by the value passed.

Reading a line
Here is a program to read the input until a newline is encountered, and to return a
list of the values read.

getLine :: IO String
getLine = getChar >>= \x ->

if x == ’\n’ then
return []

else
getLine >>= \xs ->
return (x:xs)

For example, given the input "abc\ndef" This returns the string "abc" and
the remaining input is "def".

dts
Typewritten Text
1. Get a character, call it x.
2. if it's a new line, finished - return "".
3. otherwise, read the rest of the line (recursive call of getLine). This produces a string, call it xs.
4. return x:xs.

dts
Typewritten Text
WIthout return, we couldn't write this!

Commands as a special case
The general operations on commands are:

return :: a -> IO a
(>>=) :: IO a -> (a -> IO b) -> IO b

The command done is a special case of return,
and the operator >> is a special case of >>=.

done :: IO ()
done = return ()

(>>) :: IO () -> IO () -> IO ()
m >> n = m >>= \() -> n

An analogue of “let”
Although it may seem odd at first sight, this combinator is reassuringly similar to
the familiar Haskell “let” expression. Here is a type rule for “let”.

E ` m :: a

E, x :: a ` n :: b

E ` let x = m in n :: b

Typically, “bind” is combined with lambda expressions in a way that resembles
“let” expressions. Here is the corresponding type rule.

E ` m :: IO a

E, x :: a ` n :: IO b

E ` m >>= \x -> n :: IO b

dts
Typewritten Text
"let x = m in n" is another way of writing "n where x = m".

dts
Typewritten Text
m is an expression of type a

dts
Typewritten Text
n is an expression of type b, with a variable
 x of type a.

dts
Typewritten Text
then let x=m in n is an expression of type b

dts
Typewritten Text
m returns a value of type a

dts
Typewritten Text
n returns a value of type b, contains a
 variable of type a

dts
Typewritten Text
m>>= \x->n does m, uses result to do n,
returns value of type b

Echoing input to output
This program echoes its input to its output, putting everything in upper case, until
an empty line is entered.

echo :: IO ()
echo = getLine >>= \line ->

if line == "" then
return ()

else
putStrLn (map toUpper line) >>
echo

main :: IO ()
main = echo

dts
Typewritten Text
1. Get a line of input, call it line.
2. If it's empty, we're done.
3. Otherwise, print the line in upper case.
4. Then do it again.

Testing it out
[melchior]dts: runghc Echo.hs
One line
ONE LINE
And, another line!
AND, ANOTHER LINE!
[melchior]dts:

Part V

“Do” notation

Reading a line in “do” notation
getLine :: IO String
getLine = getChar >>= \x ->

if x == ’\n’ then
return []

else
getLine >>= \xs ->
return (x:xs)

is equivalent to

getLine :: IO String
getLine = do {

x <- getChar;
if x == ’\n’ then

return []
else do {

xs <- getLine;
return (x:xs)

}
}

dts
Typewritten Text
This is a special notation that makes this easier.
do { x <- cmd; exp } is the same as cmd >>= \x -> exp

Echoing in “do” notation
echo :: IO ()
echo = getLine >>= \line ->

if line == "" then
return ()

else
putStrLn (map toUpper line) >>
echo

is equivalent to

echo :: IO ()
echo = do {

line <- getLine;
if line == "" then

return ()
else do {

putStrLn (map toUpper line);
echo

}
}

dts
Typewritten Text
do { cmd; exp } is the same as cmd >> exp which is short for cmd >>= \() -> exp

“Do” notation in general
Each line x <- e; ... becomes e >>= \x -> ...

Each line e; ... becomes e >> ...

For example,

do { x1 <- e1;
x2 <- e2;
e3;
x4 <- e4;
e5;
e6 }

is equivalent to

e1 >>= \x1 ->
e2 >>= \x2 ->
e3 >>
e4 >>= \x4 ->
e5 >>
e6

dts
Typewritten Text
Here is the general case. The result is the value returned by e6.

Part VI

Monads

Monoids
A monoid is a pair of an operator (@@) and a value u, where the operator has the
value as identity and is associative.

u @@ x = x
x @@ u = x
(x @@ y) @@ z = x @@ (y @@ z)

Examples of monoids:

(+) and 0
(*) and 1

(||) and False
(&&) and True
(++) and []

(>>) and done

Monads
We know that (>>) and done satisfy the laws of a monoid.

done >> m = m
m >> done = m
(m >> n) >> o = m >> (n >> o)

Similarly, (>>=) and return satisfy the laws of a monad.

return v >>= \x -> m = m[x:=v]
m >>= \x -> return x = m
(m >>= \x -> n) >>= \y-> o = m >>= \x -> (n >>= \y -> o)

dts
Typewritten Text
A monad is a generalised version of a monoid.
The monad laws are the closest we can get to the monoid laws when >>= and return have the types they have.

Laws of Let
We know that (>>) and done satisfy the laws of a monoid.

done >> m = m
m >> done = m
(m >> n) >> o = m >> (n >> o)

Similarly, (>>=) and return satisfy the laws of a monad.

return v >>= \x -> m = m[x:=v]
m >>= \x -> return x = m
(m >>= \x -> n) >>= \y-> o = m >>= \x -> (n >>= \y -> o)

The three monad laws have analogues in “let” notation.

let x = v in m = m[x:=v]
let x = m in x = m
let y = (let x = m in n) in o

= let x = m in (let y = n in o)

“Let” in languages with and without effects
let x = v in m = m[x:=v]
let x = m in x = m
let y = (let x = m in n) in o

= let x = m in (let y = n in o)

These laws hold even in languages with side effects. For the first law to be true, v
must be not an arbitrary term but a value, such as a constant or a variable (but not
a function application). A value immediately evaluates to itself, hence it can have
no side effects.

While in such languages one only has the above three laws for “let”, in Haskell
one has a much stronger law, where one may replace a variable by any term, rather
than by any value.

let x = n in m = m[x:=n]

Part VII

Roll your own monad—IO

The Monad type class
class Monad m where

return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

dts
Typewritten Text
There is a type class for monads, and you can create instances yourselves.
Notice: in previous type classes, the variable (m here) referred to a TYPE.
But m here is a TYPE CONSTRUCTOR - a function that takes a type and yields a type.
We've seen the case where m is IO.

My own IO monad (1)
module MyIO(MyIO, myPutChar, myGetChar, convert) where

type Input = String
type Remainder = String
type Output = String

data MyIO a = MyIO (Input -> (a, Remainder, Output))

apply :: MyIO a -> Input -> (a, Remainder, Output)
apply (MyIO f) inp = f inp

Note that the type MyIO is abstract. The only operations on it are the monad
operations, myPutChar, myGetChar, and convert. The operation apply is
not exported from the module.

dts
Typewritten Text
Here's how you can build your own version of IO.
Doing input/output, I take an input string and when I'm done I return a value, the unread part of the input string,
and an output string.
MyIO is an abstract type - the constructor of MyIO is not exported.

My own IO monad (2)
myPutChar :: Char -> MyIO ()
myPutChar c = MyIO (\inp -> ((), inp, [c]))

myGetChar :: MyIO Char
myGetChar = MyIO (\(ch:rem) -> (ch, rem, ""))

For example,

apply myGetChar "abc" == (’a’, "bc", "")
apply myGetChar "bc" == (’b’, "c", "")
apply (myPutChar ’A’) "def" == ((), "def", "A")
apply (myPutChar ’B’) "def" == ((), "def", "B")

dts
Typewritten Text
myPutChar c takes input, returns no value, leaves input unchanged, and returns the string "c" as input.
myGetChar takes input, returns the first character, the remainder of the input is everything after that, and does no output.

My own IO monad (3)
instance Monad MyIO where

return x = MyIO (\inp -> (x, inp, ""))
m >>= k = MyIO (\inp ->

let (x, rem1, out1) = apply m inp in
let (y, rem2, out2) = apply (k x) rem1 in
(y, rem2, out1++out2))

For example

apply
(myGetChar >>= \x -> myGetChar >>= \y -> return [x,y])
"abc"

== ("ab", "c", "")

apply
(myPutChar ’A’ >> myPutChar ’B’)
"def"

== ((), "def", "AB")

apply
(myGetChar >>= \x -> myPutChar (toUpper x))
"abc"

== ((), "bc", "A")

dts
Typewritten Text
I can put these things together to make a monad.

dts
Typewritten Text
m >= k (1) applies m to input, getting value x, remaining input rem1, output out1
(2) applies k x to remaining input, getting value y, remaining input rem2, output out2
(3) result is y, remaining input is still rem2, output is concatenation of out1 and out2

dts
Typewritten Text
 return x takes input, returns x,
leaves input unchanged, does no output.

My own IO monad (4)
convert :: MyIO () -> IO ()
convert m = interact (\inp ->

let (x, rem, out) = apply m inp in
out)

Here

interact :: (String -> String) -> IO ()

is part of the standard prelude. The entire input is converted to a string (lazily) and
passed to the function, and the result from the function is printed as output (also
lazily).

dts
Typewritten Text
interact connects a function to actual input/output, making the connection to the keyboard and screen.

Using my own IO monad (1)
module MyEcho where

import Char
import MyIO

myPutStr :: String -> MyIO ()
myPutStr = foldr (>>) (return ()) . map myPutChar

myPutStrLn :: String -> MyIO ()
myPutStrLn s = myPutStr s >> myPutChar ’\n’

dts
Typewritten Text
I can use this to build another version of the echo function.
First I versions of putStr and putStrLn for MyIO.

Using my own IO monad (2)
myGetLine :: MyIO String
myGetLine = myGetChar >>= \x ->

if x == ’\n’ then
return []

else
myGetLine >>= \xs ->
return (x:xs)

myEcho :: MyIO ()
myEcho = myGetLine >>= \line ->

if line == "" then
return ()

else
myPutStrLn (map toUpper line) >>
myEcho

main :: IO ()
main = convert myEcho

dts
Typewritten Text
Then I need a version of getLine for MyIO.
Finally, I write echo as before.
convert myEcho turns myEcho into IO ().

Trying it out
[melchior]dts: runghc MyEcho
This is a test.
THIS IS A TEST.
It is only a test.
IT IS ONLY A TEST.
Were this a real emergency, you’d be dead now.
WERE THIS A REAL EMERGENCY, YOU’D BE DEAD NOW.

[melchior]dts:

dts
Typewritten Text
If you run it, the result is the same as before.
The only thing that wasn't pure Haskell functions and values was interact.

You can use “do” notation, too
myGetLine :: MyIO String
myGetLine = do {

x <- myGetChar;
if x == ’\n’ then
return []

else do {
xs <- myGetLine;
return (x:xs)

}
}

myEcho :: MyIO ()
myEcho = do {

line <- myGetLine;
if line == "" then

return ()
else do {

myPutStrLn (map toUpper line);
myEcho

}
}

dts
Typewritten Text
Because MyIO is a monad, you can use "do" notation.

Part VIII

The monad of lists

dts
Typewritten Text
A lot of things turn out to have the structure of a monad.
We'll look first at lists, used to model non-deterministic computation.

The monad of lists
In the standard prelude:

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

instance Monad [] where

return :: a -> [a]
return x = [x]

(>>=) :: [a] -> (a -> [b]) -> [b]
m >>= k = [y | x <- m, y <- k x]

Equivalently, we can define:

[] >>= k = []
(x:xs) >>= k = (k x) ++ (xs >>= k)

or

m >>= k = concat (map k m)

dts
Typewritten Text
Think of a -> [b] modeling a non-deterministic computation
taking a value of type a
and returning a list of possible results of type b

dts
Typewritten Text
return x: the only possible result is x

dts
Typewritten Text
m >>= k: (1) do m, yielding a list of possible results of type a
(2) apply k to each of those possible results x
(3) result is a list containing all of (k x)'s results

‘Do’ notation and the monad of lists
pairs :: Int -> [(Int, Int)]
pairs n = [(i,j) | i <- [1..n], j <- [(i+1)..n]]

is equivalent to

pairs’ :: Int -> [(Int, Int)]
pairs’ n = do {

i <- [1..n];
j <- [(i+1)..n];
return (i,j)

}

For example,

[melchior]dts: ghci Pairs
GHCi, version 6.10.4: http://www.haskell.org/ghc/ :? for help
Pairs> pairs 4
[(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]
Pairs> pairs’ 4
[(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]

dts
Typewritten Text
Notice that "do"-notation is now a lot like comprehension notation!

Monads with plus
In the standard prelude:

class Monad m => MonadPlus m where
mzero :: m a
mplus :: m a -> m a -> m a

instance MonadPlus [] where

mzero :: [a]
mzero = []

mplus :: [a] -> [a] -> [a]
mplus = (++)

guard :: MonadPlus m => Bool -> m ()
guard False = mzero
guard True = return ()

msum :: MonadPlus m => [m a] -> m a
msum = foldr mplus mzero

dts
Typewritten Text
Some monads have extra structure:
a plus operation and a zero value
that is the identity for plus.
MonadPlus is a monad with these extra things.

dts
Typewritten Text
Non-deterministic interpretation:
mzero = [] = no possible result
return () = [()] = one possible result

dts
Typewritten Text
msum is a generalisation of concat

Using guards
pairs’’ :: Int -> [(Int, Int)]
pairs’’ n = [(i,j) | i <- [1..n], j <- [1..n], i < j]

is equivalent to

pairs’’’ :: Int -> [(Int, Int)]
pairs’’’ n = do {

i <- [1..n];
j <- [1..n];
guard (i < j);
return (i,j)

}

For example,

[melchior]dts: ghci Pairs
GHCi, version 6.10.4: http://www.haskell.org/ghc/ :? for help
Pairs> pairs’’ 4
[(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]
Pairs> pairs’’’ 4
[(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]

dts
Typewritten Text
Now we have all of comprehension notation arising via "do"-notation in a monad with plus.

dts
Typewritten Text
The effect of guard (i < j) is to drop the computation
or continue.
Think of it as z <- guard (i < j):
if False, there is no z so we can't continue
if True, z=() and we continue (but don't use z)

Part IX

Parsers

dts
Typewritten Text
We will use monads to build a parser for expression trees.

Parser type
First attempt:

type Parser a = String -> a

Second attempt:

type Parser a = String -> (a, String)

Third attempt:

type Parser a = String -> [(a, String)]

A parser for things
is a function from strings

to lists of pairs
Of things and strings

—Graham Hutton

dts
Typewritten Text
A parser for values of type a takes a string and produces a value of type a

dts
Typewritten Text
But at each stage, you have a part that you've parsed
and a remainder that is left to parse.

dts
Typewritten Text
But sometimes there will be more than one parse, or none.
So you need a list of possibilities.

Module Parser
module Parser(Parser,apply,parse,char,spot,token,

star,plus,parseInt) where

import Char
import Monad

-- The type of parsers
data Parser a = Parser (String -> [(a, String)])

-- Apply a parser
apply :: Parser a -> String -> [(a, String)]
apply (Parser f) s = f s

-- Return parsed value, assuming at least one successful parse
parse :: Parser a -> String -> a
parse m s = head [x | (x,t) <- apply m s, t == ""]

dts
Typewritten Text
Parser is an abstract data type - the constructor is not exported.
There is an implicit invariant: the string produced is always a final substring of the string consumed.
parse m s looks for a result (x,t) from apply m s which completely consumes s. We take the first one we find.
(If there is more than one, ambiguous - we could return an error.)

Parser is a Monad
-- Parsers form a monad

-- class Monad m where
-- return :: a -> m a
-- (>>=) :: m a -> (a -> m b) -> m b

instance Monad Parser where
return x = Parser (\s -> [(x,s)])
m >>= k = Parser (\s ->

[(y, u) |
(x, t) <- apply m s,
(y, u) <- apply (k x) t])

dts
Typewritten Text
m >>= k:
(1) apply m to s, giving possibilities (x,t) where t is the unparsed remainder
(2) apply (k x) to t, giving possibilities (y,u) where u is the final unparsed remainder
(3) the result is all of the possible (y,u) resulting from all of the possible (x,t)

dts
Typewritten Text
Parsers form a monad

dts
Typewritten Text
return x: just return x, without consuming any input

Parser is a Monad with Plus
-- Some monads have additional structure

-- class MonadPlus m where
-- mzero :: m a
-- mplus :: m a -> m a -> m a

instance MonadPlus Parser where
mzero = Parser (\s -> [])
mplus m n = Parser (\s -> apply m s ++ apply n s)

dts
Typewritten Text
Parsers also form a monad with plus.
The monad structure gives SEQUENCING.
The plus structure gives ALTERNATIVES.

Parsing characters
-- Parse a single character
char :: Parser Char
char = Parser f

where
f [] = []
f (c:s) = [(c,s)]

-- Parse a character satisfying a predicate (e.g., isDigit)
spot :: (Char -> Bool) -> Parser Char
spot p = Parser f

where
f [] = []
f (c:s) | p c = [(c, s)]

| otherwise = []

-- Parse a given character
token :: Char -> Parser Char
token c = spot (== c)

dts
Typewritten Text
Here is a parser that parses the first character in the input.
If input is empty, failure: empty list of possibilities.
If input is non-empty, first character is result, tail is remaining string.

dts
Typewritten Text
This is similar, but requires the character to satisfy a given predicate.
So spot isDigit will only parse digits.

dts
Typewritten Text
token c will parse the character c only.
It will fail if the next character is something else.

Parsing characters
-- Parse a single character
char :: Parser Char
char = Parser f

where
f [] = []
f (c:s) = [(c,s)]

-- Parse a character satisfying a predicate (e.g., isDigit)
spot :: (Char -> Bool) -> Parser Char
spot p = do { c <- char; guard (p c); return c }

-- Parse a given character
token :: Char -> Parser Char
token c = spot (== c)

dts
Typewritten Text
Here's the same thing, using do-notation and guard; remember, guard is defined for any MonadPlus.

dts
Typewritten Text
Examples:
apply (spot isDigit) "123ab" = [('1', "23ab")]
apply (spot isDigit) "ab" = []
apply (token 'a') "ab" = [('a', "b")]
apply (do {x <- spot isDigit; token '+'; y <- spot isDigit; return (digitToInt x + digitToInt y)}) "1+2*4" = [(3, "*4"])

Parsing a string
match :: String -> Parser String
match [] = return []
match (x:xs) = do

y <- token x;
ys <- match xs;
return (y:ys)

dts
Typewritten Text
To parse a whole string:
if it is empty, you're done - return ""
if it is x:xs
(1) y is the result of token x (y = x, but token x will consume a character from the input and fail if it isn't x)
(2) then parse xs, yielding ys (again, ys = xs)
(3) then return y:ys

Parsing a sequence
-- match zero or more occurrences
star :: Parser a -> Parser [a]
star p = plus p ‘mplus‘ return []

-- match one or more occurrences
plus :: Parser a -> Parser [a]
plus p = do { x <- p;

xs <- star p;
return (x:xs) }

dts
Typewritten Text
star p is like p* from regular expressions: it parses zero or more occurrences of p.
plus p parses one or more occurrences of p.
Note the mutual recursion.

dts
Typewritten Text
Example:
apply (star (spot isDigit)) "123ab" = [("123", "ab"), ("12", "3ab"), ("1", "23ab"), ("", "123ab")]

Parsing an integer
-- match a natural number
parseNat :: Parser Int
parseNat = do { s <- plus (spot isDigit);

return (read s) }

-- match a negative number
parseNeg :: Parser Int
parseNeg = do { token ’-’;

n <- parseNat
return (-n) }

-- match an integer
parseInt :: Parser Int
parseInt = parseNat ‘mplus‘ parseNeg

dts
Typewritten Text
parse one or more digits
then convert it to an Int

dts
Typewritten Text
parse a minus sign followed by a natural number

dts
Typewritten Text
parse an integer: parse either a positive natural number or a negative one

Module Exp
module Exp where

import Monad
import Parser

data Exp = Lit Int
| Exp :+: Exp
| Exp :*: Exp
deriving (Eq,Show)

evalExp :: Exp -> Int
evalExp (Lit n) = n
evalExp (e :+: f) = evalExp e + evalExp f
evalExp (e :*: f) = evalExp e * evalExp f

dts
Typewritten Text
Here's Exp (expression trees) from before, with an evaluation function.

Parsing an expression
parseExp :: Parser Exp
parseExp = parseLit ‘mplus‘ parseAdd ‘mplus‘ parseMul

where
parseLit = do { n <- parseInt;

return (Lit n) }
parseAdd = do { token ’(’;

d <- parseExp;
token ’+’;
e <- parseExp;
token ’)’;
return (d :+: e) }

parseMul = do { token ’(’;
d <- parseExp;
token ’*’;
e <- parseExp;
token ’)’;
return (d :*: e) }

dts
Typewritten Text
An Exp is either a literal, or an addition, or a multiplication

dts
Typewritten Text
Literal: parse an integer n, return Lit n

dts
Typewritten Text
Addition:
(1) parse (
(2) parse an Exp d
(3) parse +
(4) parse an Exp e
(5) parse)
(6) return d :+: e

dts
Typewritten Text
Multiplication: similarly

dts
Typewritten Text
Notice: after you've read (Exp you don't know if the next thing will be + or *. mplus handles that.
Also, expressions can be nested. Recursion handles that.

Testing the parser
[melchior]dts: ghci Exp.hs
GHCi, version 6.10.4: http://www.haskell.org/ghc/ :? for help
[1 of 2] Compiling Parser (Parser.hs, interpreted)
[2 of 2] Compiling Exp (Exp.hs, interpreted)
Ok, modules loaded: Parser, Exp.

*Exp> parse parseExp "(1+(2*3))"
Lit 1 :+: (Lit 2 :*: Lit 3)

*Exp> evalExp (parse parseExp "(1+(2*3))")
7

*Exp> parse parseExp "((1+2)*3)"
(Lit 1 :+: Lit 2) :*: Lit 3

*Exp> evalExp (parse parseExp "((1+2)*3)")
9

*Exp>

dts
Typewritten Text
And it works! We can parse strings to give Exp values, which can be evaluated.

