Agentic RAG: A new AI architecture for ROI

View profile for Ava Chawla, MBA

CTO & Author of Orchestrating Intelligence | AI, GTM & Revenue Transformation | Scaling Intelligent Organizations

Love this breakdown of Agentic RAG. To add to this... One pattern I’m seeing in AI applications delivering ROI is the move from one monolithic LLM to multiple SLMs acting as agents per function — collaborating in a microservices-style architecture. I touch on this in the AI Building Blocks chapter of my upcoming book "Orchestrating Intelligence: The AI Playbook", which culminates with the Orchestrator’s Compass — a practical guide for navigating the AI landscape. #nvidia #aws #azure #agenticai #rag #llm #orchestratingintelligence

View profile for Brij kishore Pandey
Brij kishore Pandey Brij kishore Pandey is an Influencer

AI Architect | Strategist | Generative AI | Agentic AI

Most Retrieval-Augmented Generation (RAG) pipelines today stop at a single task — retrieve, generate, and respond. That model works, but it’s 𝗻𝗼𝘁 𝗶𝗻𝘁𝗲𝗹𝗹𝗶𝗴𝗲𝗻𝘁. It doesn’t adapt, retain memory, or coordinate reasoning across multiple tools. That’s where 𝗔𝗴𝗲𝗻𝘁𝗶𝗰 𝗔𝗜 𝗥𝗔𝗚 changes the game. 𝗔 𝗦𝗺𝗮𝗿𝘁𝗲𝗿 𝗔𝗿𝗰𝗵𝗶𝘁𝗲𝗰𝘁𝘂𝗿𝗲 𝗳𝗼𝗿 𝗔𝗱𝗮𝗽𝘁𝗶𝘃𝗲 𝗥𝗲𝗮𝘀𝗼𝗻𝗶𝗻𝗴 In a traditional RAG setup, the LLM acts as a passive generator. In an 𝗔𝗴𝗲𝗻𝘁𝗶𝗰 𝗥𝗔𝗚 system, it becomes an 𝗮𝗰𝘁𝗶𝘃𝗲 𝗽𝗿𝗼𝗯𝗹𝗲𝗺-𝘀𝗼𝗹𝘃𝗲𝗿 — supported by a network of specialized components that collaborate like an intelligent team. Here’s how it works: 𝗔𝗴𝗲𝗻𝘁 𝗢𝗿𝗰𝗵𝗲𝘀𝘁𝗿𝗮𝘁𝗼𝗿 — The decision-maker that interprets user intent and routes requests to the right tools or agents. It’s the core logic layer that turns a static flow into an adaptive system. 𝗖𝗼𝗻𝘁𝗲𝘅𝘁 𝗠𝗮𝗻𝗮𝗴𝗲𝗿 — Maintains awareness across turns, retaining relevant context and passing it to the LLM. This eliminates “context resets” and improves answer consistency over time. 𝗠𝗲𝗺𝗼𝗿𝘆 𝗟𝗮𝘆𝗲𝗿 — Divided into Short-Term (session-based) and Long-Term (persistent or vector-based) memory, it allows the system to 𝗹𝗲𝗮𝗿𝗻 𝗳𝗿𝗼𝗺 𝗲𝘅𝗽𝗲𝗿𝗶𝗲𝗻𝗰𝗲. Every interaction strengthens the model’s knowledge base. 𝗞𝗻𝗼𝘄𝗹𝗲𝗱𝗴𝗲 𝗟𝗮𝘆𝗲𝗿 — The foundation. It combines similarity search, embeddings, and multi-granular document segmentation (sentence, paragraph, recursive) for precision retrieval. 𝗧𝗼𝗼𝗹 𝗟𝗮𝘆𝗲𝗿 — Includes the Search Tool, Vector Store Tool, and Code Interpreter Tool — each acting as a functional agent that executes specialized tasks and returns structured outputs. 𝗙𝗲𝗲𝗱𝗯𝗮𝗰𝗸 𝗟𝗼𝗼𝗽 — Every user response feeds insights back into the vector store, creating a continuous learning and improvement cycle. 𝗪𝗵𝘆 𝗜𝘁 𝗠𝗮𝘁𝘁𝗲𝗿𝘀 Agentic RAG transforms an LLM from a passive responder into a 𝗰𝗼𝗴𝗻𝗶𝘁𝗶𝘃𝗲 𝗲𝗻𝗴𝗶𝗻𝗲 capable of reasoning, memory, and self-optimization. This shift isn’t just technical — it’s strategic It defines how AI systems will evolve inside organizations: from one-off assistants to adaptive agents that understand context, learn continuously, and execute with autonomy.

  • No alternative text description for this image

To view or add a comment, sign in

Explore content categories