Wouter van Heddeghem’s Post

View profile for Wouter van Heddeghem

Senior SAP S/4HANA Finance Consultant + Dutch + French + Spanish + English. 721,000 SAP Followers. I promote SAP jobseekers for free on LinkedIn.

Check out this post by Brij kishore Pandey ! Most Retrieval-Augmented Generation (RAG) pipelines today stop at a single task — retrieve, generate, and respond. That model works, but it’s 𝗻𝗼𝘁 𝗶𝗻𝘁𝗲𝗹𝗹𝗶𝗴𝗲𝗻𝘁. It doesn’t adapt, retain memory, or coordinate reasoning across multiple tools. That’s where 𝗔𝗴𝗲𝗻𝘁𝗶𝗰 𝗔𝗜 𝗥𝗔𝗚 changes the game. 𝗔 𝗦𝗺𝗮𝗿𝘁𝗲𝗿 𝗔𝗿𝗰𝗵𝗶𝘁𝗲𝗰𝘁𝘂𝗿𝗲 𝗳𝗼𝗿 𝗔𝗱𝗮𝗽𝘁𝗶𝘃𝗲 𝗥𝗲𝗮𝘀𝗼𝗻𝗶𝗻𝗴 In a traditional RAG setup, the LLM acts as a passive generator. In an 𝗔𝗴𝗲𝗻𝘁𝗶𝗰 𝗥𝗔𝗚 system, it becomes an 𝗮𝗰𝘁𝗶𝘃𝗲 𝗽𝗿𝗼𝗯𝗹𝗲𝗺-𝘀𝗼𝗹𝘃𝗲𝗿 — supported by a network of specialized components that collaborate like an intelligent team. Here’s how it works: 𝗔𝗴𝗲𝗻𝘁 𝗢𝗿𝗰𝗵𝗲𝘀𝘁𝗿𝗮𝘁𝗼𝗿 — The decision-maker that interprets user intent and routes requests to the right tools or agents. It’s the core logic layer that turns a static flow into an adaptive system. 𝗖𝗼𝗻𝘁𝗲𝘅𝘁 𝗠𝗮𝗻𝗮𝗴𝗲𝗿 — Maintains awareness across turns, retaining relevant context and passing it to the LLM. This eliminates “context resets” and improves answer consistency over time. 𝗠𝗲𝗺𝗼𝗿𝘆 𝗟𝗮𝘆𝗲𝗿 — Divided into Short-Term (session-based) and Long-Term (persistent or vector-based) memory, it allows the system to 𝗹𝗲𝗮𝗿𝗻 𝗳𝗿𝗼𝗺 𝗲𝘅𝗽𝗲𝗿𝗶𝗲𝗻𝗰𝗲. Every interaction strengthens the model’s knowledge base. 𝗞𝗻𝗼𝘄𝗹𝗲𝗱𝗴𝗲 𝗟𝗮𝘆𝗲𝗿 — The foundation. It combines similarity search, embeddings, and multi-granular document segmentation (sentence, paragraph, recursive) for precision retrieval. 𝗧𝗼𝗼𝗹 𝗟𝗮𝘆𝗲𝗿 — Includes the Search Tool, Vector Store Tool, and Code Interpreter Tool — each acting as a functional agent that executes specialized tasks and returns structured outputs. 𝗙𝗲𝗲𝗱𝗯𝗮𝗰𝗸 𝗟𝗼𝗼𝗽 — Every user response feeds insights back into the vector store, creating a continuous learning and improvement cycle. 𝗪𝗵𝘆 𝗜𝘁 𝗠𝗮𝘁𝘁𝗲𝗿𝘀 Agentic RAG transforms an LLM from a passive responder into a 𝗰𝗼𝗴𝗻𝗶𝘁𝗶𝘃𝗲 𝗲𝗻𝗴𝗶𝗻𝗲 capable of reasoning, memory, and self-optimization. This shift isn’t just technical — it’s strategic It defines how AI systems will evolve inside organizations: from one-off assistants to adaptive agents that understand context, learn continuously, and execute with autonomy.

  • diagram

To view or add a comment, sign in

Explore content categories