How Data Integrity Affects AI Performance

Explore top LinkedIn content from expert professionals.

  • View profile for Montgomery Singman
    Montgomery Singman Montgomery Singman is an Influencer

    Managing Partner @ Radiance Strategic Solutions | xSony, xElectronic Arts, xCapcom, xAtari

    26,459 followers

    AI models are at risk of degrading in quality as they increasingly train on AI-generated data, leading to what researchers call "model collapse." New research published in Nature reveals a concerning trend in AI development: as AI models train on data generated by other AI, their output quality diminishes. This degradation, likened to taking photos of photos, threatens the reliability and effectiveness of large language models. The study highlights the importance of using high-quality, diverse training data and raises questions about the future of AI if the current trajectory continues unchecked. 🖥️ Deteriorating Quality with AI Data: Research indicates that AI models progressively degrade in output quality when trained on content generated by preceding AI models, a cycle that exacerbates each generation. 📉 The phenomenon of Model Collapse: Described as the process where AI output becomes increasingly nonsensical and incoherent, "model collapse" mirrors the loss seen in repeatedly copied images. 🌐 Critical Role of Data Quality: High-quality, diverse, and human-generated data is essential to maintaining the integrity and effectiveness of AI models and preventing the degradation observed with synthetic data reliance. 🧪 Mitigating Degradation Strategies: Implementing measures such as allowing models to access a portion of the original, high-quality dataset has been shown to reduce some of the adverse effects of training on AI-generated data. 🔍 Importance of Data Provenance: Establishing robust methods to track the origin and nature of training data (data provenance) is crucial for ensuring that AI systems train on reliable and representative samples, which is vital for their accuracy and utility. #AI #ArtificialIntelligence #ModelCollapse #DataQuality #AIResearch #NatureStudy #TechTrends #MachineLearning #DataProvenance #FutureOfAI

  • View profile for Ajay Patel

    Product Leader | Data & AI

    3,476 followers

    My AI was ‘perfect’—until bad data turned it into my worst nightmare. 📉 By the numbers: 85% of AI projects fail due to poor data quality (Gartner). Data scientists spend 80% of their time fixing bad data instead of building models. 📊 What’s driving the disconnect? Incomplete or outdated datasets Duplicate or inconsistent records Noise from irrelevant or poorly labeled data Data quality The result? Faulty predictions, bad decisions, and a loss of trust in AI. Without addressing the root cause—data quality—your AI ambitions will never reach their full potential. Building Data Muscle: AI-Ready Data Done Right Preparing data for AI isn’t just about cleaning up a few errors—it’s about creating a robust, scalable pipeline. Here’s how: 1️⃣ Audit Your Data: Identify gaps, inconsistencies, and irrelevance in your datasets. 2️⃣ Automate Data Cleaning: Use advanced tools to deduplicate, normalize, and enrich your data. 3️⃣ Prioritize Relevance: Not all data is useful. Focus on high-quality, contextually relevant data. 4️⃣ Monitor Continuously: Build systems to detect and fix bad data after deployment. These steps lay the foundation for successful, reliable AI systems. Why It Matters Bad #data doesn’t just hinder #AI—it amplifies its flaws. Even the most sophisticated models can’t overcome the challenges of poor-quality data. To unlock AI’s potential, you need to invest in a data-first approach. 💡 What’s Next? It’s time to ask yourself: Is your data AI-ready? The key to avoiding AI failure lies in your preparation(#innovation #machinelearning). What strategies are you using to ensure your data is up to the task? Let’s learn from each other. ♻️ Let’s shape the future together: 👍 React 💭 Comment 🔗 Share

  • View profile for Christopher Hockey, IGP, CIPP/US, AIGP

    Helping Fortune 1000 Executives Reduce Risk, Protect Data, and Build Trust Through Strategic Information and AI Governance Solutions.

    1,704 followers

    AI is only as good as the data you train it on. But what happens when that data is flawed? 🤔 Think about it: ❌ A food delivery app sends orders to the wrong address because the system was trained on messy location data. 📍 ❌ A bank denies loans because AI was trained on biased financial history 📉 ❌ A chatbot gives wrong answers because it was trained on outdated information. 🤖🔄 These aren’t AI failures. They’re data failures. The problem is: 👉 If you train AI on biased data, you get biased decisions. 👉 If your data is messy, AI will fail, not because it's bad, but because it was set up to fail. 👉 If you feed AI garbage, it will give you garbage. So instead of fearing AI, we should fear poor data management. 💡 Fix the data, and AI will work for you How can organizations avoid feeding AI bad data? ✔ Regularly audit and clean data. ✔ Use diverse, high-quality data sources. ✔ Train AI with transparency and fairness in mind. What do you think? Are we blaming AI when the real issue is how we handle data? Share your thoughts in the comments! #AI #DataGovernance #AIEthics #MachineLearning -------------------------------------------------------------- 👋 Chris Hockey | Manager at Alvarez & Marsal 📌 Expert in Information and AI Governance, Risk, and Compliance 🔍 Reducing compliance and data breach risks by managing data volume and relevance 🔍 Aligning AI initiatives with the evolving AI regulatory landscape ✨ Insights on: • AI Governance • Information Governance • Data Risk • Information Management • Privacy Regulations & Compliance 🔔 Follow for strategic insights on advancing information and AI governance 🤝 Connect to explore tailored solutions that drive resilience and impact -------------------------------------------------------------- Opinions are my own and not the views of my employer.

Explore categories