Key Risks in AI Development

Explore top LinkedIn content from expert professionals.

  • View profile for Aishwarya Srinivasan
    Aishwarya Srinivasan Aishwarya Srinivasan is an Influencer
    589,373 followers

    One of the most important contributions of Google DeepMind's new AGI Safety and Security paper is a clean, actionable framing of risk types. Instead of lumping all AI risks into one “doomer” narrative, they break it down into 4 clear categories- with very different implications for mitigation: 1. Misuse → The user is the adversary This isn’t the model behaving badly on its own. It’s humans intentionally instructing it to cause harm- think jailbreak prompts, bioengineering recipes, or social engineering scripts. If we don’t build strong guardrails around access, it doesn’t matter how aligned your model is. Safety = security + control 2. Misalignment → The AI is the adversary The model understands the developer’s intent- but still chooses a path that’s misaligned. It optimizes the reward signal, not the goal behind it. This is the classic “paperclip maximizer” problem, but much more subtle in practice. Alignment isn’t a static checkbox. We need continuous oversight, better interpretability, and ways to build confidence that a system is truly doing what we intend- even as it grows more capable. 3. Mistakes → The world is the adversary Sometimes the AI just… gets it wrong. Not because it’s malicious, but because it lacks the context, or generalizes poorly. This is where brittleness shows up- especially in real-world domains like healthcare, education, or policy. Don’t just test your model- stress test it. Mistakes come from gaps in our data, assumptions, and feedback loops. It's important to build with humility and audit aggressively. 4. Structural Risks → The system is the adversary These are emergent harms- misinformation ecosystems, feedback loops, market failures- that don’t come from one bad actor or one bad model, but from the way everything interacts. These are the hardest problems- and the most underfunded. We need researchers, policymakers, and industry working together to design incentive-aligned ecosystems for AI. The brilliance of this framework: It gives us language to ask better questions. Not just “is this AI safe?” But: - Safe from whom? - In what context? - Over what time horizon? We don’t need to agree on timelines for AGI to agree that risk literacy like this is step one. I’ll be sharing more breakdowns from the paper soon- this is one of the most pragmatic blueprints I’ve seen so far. 🔗Link to the paper in comments. -------- If you found this insightful, do share it with your network ♻️ Follow me (Aishwarya Srinivasan) for more AI news, insights, and educational content to keep you informed in this hyperfast AI landscape 💙

  • View profile for Victoria Beckman

    Associate General Counsel - Cybersecurity & Privacy

    31,336 followers

    The Cybersecurity and Infrastructure Security Agency together with the National Security Agency, the Federal Bureau of Investigation (FBI), the National Cyber Security Centre, and other international organizations, published this advisory providing recommendations for organizations in how to protect the integrity, confidentiality, and availability of the data used to train and operate #artificialintelligence. The advisory focuses on three main risk areas: 1. Data #supplychain threats: Including compromised third-party data, poisoning of datasets, and lack of provenance verification. 2. Maliciously modified data: Covering adversarial #machinelearning, statistical bias, metadata manipulation, and unauthorized duplication. 3. Data drift: The gradual degradation of model performance due to changes in real-world data inputs over time. The best practices recommended include: - Tracking data provenance and applying cryptographic controls such as digital signatures and secure hashes. - Encrypting data at rest, in transit, and during processing—especially sensitive or mission-critical information. - Implementing strict access controls and classification protocols based on data sensitivity. - Applying privacy-preserving techniques such as data masking, differential #privacy, and federated learning. - Regularly auditing datasets and metadata, conducting anomaly detection, and mitigating statistical bias. - Securely deleting obsolete data and continuously assessing #datasecurity risks. This is a helpful roadmap for any organization deploying #AI, especially those working with limited internal resources or relying on third-party data.

Explore categories