The AI Security Institute published the paper “Principles for Evaluating Misuse Safeguards of Frontier AI Systems” outlining a five-step process to help #artificialintelligence developers assess the effectiveness of safeguards designed to prevent the misuse of frontier AI systems. Frontier #AIsystems are advanced, innovative technologies that push the current boundaries of the most advanced #AI models. The paper sets out the following steps for evaluating misuse safeguards: Step 1 - Define safeguard requirements: Prohibited behaviors, #threatactors considered in the safeguard design, and assumptions made about how safeguards will function. Step 2 - Establish a safeguards plan that includes safeguards aimed to ensure threat actors cannot access the models or dangerous capabilities of models and tools and processes that ensure existing system and access safeguards maintain their effectiveness. Step 3 - Document evidence demonstrating the effectiveness of the safeguards like red-teaming exercises that evaluate safeguards against adversarial #cyberattacks, static evaluations assessing safeguard performance on known datasets, automated AI techniques testing robustness against potential exploits, and third-party assessments. Step 4 - Establish a plan for post-deployment assessment that includes updating safeguard techniques as new attack methods emerge, monitoring vulnerabilities, and adapting safeguards based on new best practices. Step 5 - Justify whether the evidence and assessment plan are sufficient. To make it easy for developers to use these recommendations, #AISI also published a Template for Evaluating Misuse Safeguards of Frontier AI Systems, which draws on these principles to provide a list of concrete and actionable questions to guide effective safeguards evaluation.
Steps to Initiate AI Risk Assessment
Explore top LinkedIn content from expert professionals.
-
-
🧭Governing AI Ethics with ISO42001🧭 Many organizations treat AI ethics as a branding exercise, a list of principles with no operational enforcement. As Reid Blackman, Ph.D. argues in "Ethical Machines", without governance structures, ethical commitments are empty promises. For those who prefer to create something different, #ISO42001 provides a practical framework to ensure AI ethics is embedded in real-world decision-making. ➡️Building Ethical AI with ISO42001 1. Define AI Ethics as a Business Priority ISO42001 requires organizations to formalize AI governance (Clause 5.2). This means: 🔸Establishing an AI policy linked to business strategy and compliance. 🔸Assigning clear leadership roles for AI oversight (Clause A.3.2). 🔸Aligning AI governance with existing security and risk frameworks (Clause A.2.3). 👉Without defined governance structures, AI ethics remains a concept, not a practice. 2. Conduct AI Risk & Impact Assessments Ethical failures often stem from hidden risks: bias in training data, misaligned incentives, unintended consequences. ISO42001 mandates: 🔸AI Risk Assessments (#ISO23894, Clause 6.1.2): Identifying bias, drift, and security vulnerabilities. 🔸AI Impact Assessments (#ISO42005, Clause 6.1.4): Evaluating AI’s societal impact before deployment. 👉Ignoring these assessments leaves your organization reacting to ethical failures instead of preventing them. 3. Integrate Ethics Throughout the AI Lifecycle ISO42001 embeds ethics at every stage of AI development: 🔸Design: Define fairness, security, and explainability objectives (Clause A.6.1.2). 🔸Development: Apply bias mitigation and explainability tools (Clause A.7.4). 🔸Deployment: Establish oversight, audit trails, and human intervention mechanisms (Clause A.9.2). 👉Ethical AI is not a last-minute check, it must be integrated/operationalized from the start. 4. Enforce AI Accountability & Human Oversight AI failures occur when accountability is unclear. ISO42001 requires: 🔸Defined responsibility for AI decisions (Clause A.9.2). 🔸Incident response plans for AI failures (Clause A.10.4). 🔸Audit trails to ensure AI transparency (Clause A.5.5). 👉Your governance must answer: Who monitors bias? Who approves AI decisions? Without clear accountability, ethical risks will become systemic failures. 5. Continuously Audit & Improve AI Ethics Governance AI risks evolve. Static governance models fail. ISO42001 mandates: 🔸Internal AI audits to evaluate compliance (Clause 9.2). 🔸Management reviews to refine governance practices (Clause 10.1). 👉AI ethics isn’t a magic bullet, but a continuous process of risk assessment, policy updates, and oversight. ➡️ AI Ethics Requires Real Governance AI ethics only works if it’s enforceable. Use ISO42001 to: ✅Turn ethical principles into actionable governance. ✅Proactively assess AI risks instead of reacting to failures. ✅Ensure AI decisions are explainable, accountable, and human-centered.
-
ISO 5338 has key AI risk management considerations useful to security and compliance leaders. It's a non-certifiable standard laying out best practices for the AI system lifecycle. And it’s related to ISO 42001 because control A6 from Annex A specifically mentions ISO 5338. Here are some key things to think about at every stage: INCEPTION -> Why do I need a non-deterministic system? -> What types of data will the system ingest? -> What types of outputs will it create? -> What is the sensitivity of this info? -> Any regulatory requirements? -> Any contractual ones? -> Is this cost-effective? DESIGN AND DEVELOPMENT -> What type of model? Linear regressor? Neural net? -> Does it need to talk to other systems (an agent)? -> What are the consequences of bad outputs? -> What is the source of the training data? -> How / where will data be retained? -> Will there be continuous training? -> Do we need to moderate outputs? -> Is system browsing the internet? VERIFICATION AND VALIDATION -> Confirm system meets business requirements. -> Consider external review (per NIST AI RMF). -> Do red-teaming and penetration testing. -> Do unit, integration, and UA testing DEPLOYMENT -> Would deploying system be within our risk appetite? -> If not, who is signing off? What is the justification? -> Train users and impacted parties. -> Update shared security model. -> Publish documentation. -> Add to asset inventory. OPERATION AND MONITORING -> Do we have a vulnerability disclosure program? -> Do we have a whistleblower portal? -> How are we tracking performance? -> Model drift? CONTINUOUS VALIDATION -> Is the system still meeting our business requirements? -> If there is an incident or vulnerability, what do we do? -> What are our legal disclosure requirements? -> Should we disclose even more? -> Do regular audits. RE-EVALUATION -> Has the system exceeded our risk appetite? -> If an incident, do a root cause analysis. -> Do we need to change policies? -> Revamp procedures? RETIREMENT -> Is there business need to retain model or data? Legal? -> Delete everything we don’t need, including backups. -> Audit the deletion. Are you using ISO 5338 for AI risk management?
Explore categories
- Hospitality & Tourism
- Productivity
- Finance
- Soft Skills & Emotional Intelligence
- Project Management
- Education
- Technology
- Leadership
- Ecommerce
- User Experience
- Recruitment & HR
- Customer Experience
- Real Estate
- Marketing
- Sales
- Retail & Merchandising
- Science
- Supply Chain Management
- Future Of Work
- Consulting
- Writing
- Economics
- Employee Experience
- Workplace Trends
- Fundraising
- Networking
- Corporate Social Responsibility
- Negotiation
- Communication
- Engineering
- Career
- Business Strategy
- Change Management
- Organizational Culture
- Design
- Innovation
- Event Planning
- Training & Development