How to Measure AI Success in Enterprises

Explore top LinkedIn content from expert professionals.

  • View profile for Brij kishore Pandey
    Brij kishore Pandey Brij kishore Pandey is an Influencer

    AI Architect | Strategist | Generative AI | Agentic AI

    685,089 followers

    Over the last year, I’ve seen many people fall into the same trap: They launch an AI-powered agent (chatbot, assistant, support tool, etc.)… But only track surface-level KPIs — like response time or number of users. That’s not enough. To create AI systems that actually deliver value, we need 𝗵𝗼𝗹𝗶𝘀𝘁𝗶𝗰, 𝗵𝘂𝗺𝗮𝗻-𝗰𝗲𝗻𝘁𝗿𝗶𝗰 𝗺𝗲𝘁𝗿𝗶𝗰𝘀 that reflect: • User trust • Task success • Business impact • Experience quality    This infographic highlights 15 𝘦𝘴𝘴𝘦𝘯𝘵𝘪𝘢𝘭 dimensions to consider: ↳ 𝗥𝗲𝘀𝗽𝗼𝗻𝘀𝗲 𝗔𝗰𝗰𝘂𝗿𝗮𝗰𝘆 — Are your AI answers actually useful and correct? ↳ 𝗧𝗮𝘀𝗸 𝗖𝗼𝗺𝗽𝗹𝗲𝘁𝗶𝗼𝗻 𝗥𝗮𝘁𝗲 — Can the agent complete full workflows, not just answer trivia? ↳ 𝗟𝗮𝘁𝗲𝗻𝗰𝘆 — Response speed still matters, especially in production. ↳ 𝗨𝘀𝗲𝗿 𝗘𝗻𝗴𝗮𝗴𝗲𝗺𝗲𝗻𝘁 — How often are users returning or interacting meaningfully? ↳ 𝗦𝘂𝗰𝗰𝗲𝘀𝘀 𝗥𝗮𝘁𝗲 — Did the user achieve their goal? This is your north star. ↳ 𝗘𝗿𝗿𝗼𝗿 𝗥𝗮𝘁𝗲 — Irrelevant or wrong responses? That’s friction. ↳ 𝗦𝗲𝘀𝘀𝗶𝗼𝗻 𝗗𝘂𝗿𝗮𝘁𝗶𝗼𝗻 — Longer isn’t always better — it depends on the goal. ↳ 𝗨𝘀𝗲𝗿 𝗥𝗲𝘁𝗲𝗻𝘁𝗶𝗼𝗻 — Are users coming back 𝘢𝘧𝘵𝘦𝘳 the first experience? ↳ 𝗖𝗼𝘀𝘁 𝗽𝗲𝗿 𝗜𝗻𝘁𝗲𝗿𝗮𝗰𝘁𝗶𝗼𝗻 — Especially critical at scale. Budget-wise agents win. ↳ 𝗖𝗼𝗻𝘃𝗲𝗿𝘀𝗮𝘁𝗶𝗼𝗻 𝗗𝗲𝗽𝘁𝗵 — Can the agent handle follow-ups and multi-turn dialogue? ↳ 𝗨𝘀𝗲𝗿 𝗦𝗮𝘁𝗶𝘀𝗳𝗮𝗰𝘁𝗶𝗼𝗻 𝗦𝗰𝗼𝗿𝗲 — Feedback from actual users is gold. ↳ 𝗖𝗼𝗻𝘁𝗲𝘅𝘁𝘂𝗮𝗹 𝗨𝗻𝗱𝗲𝗿𝘀𝘁𝗮𝗻𝗱𝗶𝗻𝗴 — Can your AI 𝘳𝘦𝘮𝘦𝘮𝘣𝘦𝘳 𝘢𝘯𝘥 𝘳𝘦𝘧𝘦𝘳 to earlier inputs? ↳ 𝗦𝗰𝗮𝗹𝗮𝗯𝗶𝗹𝗶𝘁𝘆 — Can it handle volume 𝘸𝘪𝘵𝘩𝘰𝘶𝘵 degrading performance? ↳ 𝗞𝗻𝗼𝘄𝗹𝗲𝗱𝗴𝗲 𝗥𝗲𝘁𝗿𝗶𝗲𝘃𝗮𝗹 𝗘𝗳𝗳𝗶𝗰𝗶𝗲𝗻𝗰𝘆 — This is key for RAG-based agents. ↳ 𝗔𝗱𝗮𝗽𝘁𝗮𝗯𝗶𝗹𝗶𝘁𝘆 𝗦𝗰𝗼𝗿𝗲 — Is your AI learning and improving over time? If you're building or managing AI agents — bookmark this. Whether it's a support bot, GenAI assistant, or a multi-agent system — these are the metrics that will shape real-world success. 𝗗𝗶𝗱 𝗜 𝗺𝗶𝘀𝘀 𝗮𝗻𝘆 𝗰𝗿𝗶𝘁𝗶𝗰𝗮𝗹 𝗼𝗻𝗲𝘀 𝘆𝗼𝘂 𝘂𝘀𝗲 𝗶𝗻 𝘆𝗼𝘂𝗿 𝗽𝗿𝗼𝗷𝗲𝗰𝘁𝘀? Let’s make this list even stronger — drop your thoughts 👇

  • View profile for Armand Ruiz
    Armand Ruiz Armand Ruiz is an Influencer

    VP of AI Platform @IBM

    201,106 followers

    You've built your AI agent... but how do you know it's not failing silently in production? Building AI agents is only the beginning. If you’re thinking of shipping agents into production without a solid evaluation loop, you’re setting yourself up for silent failures, wasted compute, and eventully broken trust. Here’s how to make your AI agents production-ready with a clear, actionable evaluation framework: 𝟭. 𝗜𝗻𝘀𝘁𝗿𝘂𝗺𝗲𝗻𝘁 𝘁𝗵𝗲 𝗥𝗼𝘂𝘁𝗲𝗿 The router is your agent’s control center. Make sure you’re logging: - Function Selection: Which skill or tool did it choose? Was it the right one for the input? - Parameter Extraction: Did it extract the correct arguments? Were they formatted and passed correctly? ✅ Action: Add logs and traces to every routing decision. Measure correctness on real queries, not just happy paths. 𝟮. 𝗠𝗼𝗻𝗶𝘁𝗼𝗿 𝘁𝗵𝗲 𝗦𝗸𝗶𝗹𝗹𝘀 These are your execution blocks; API calls, RAG pipelines, code snippets, etc. You need to track: - Task Execution: Did the function run successfully? - Output Validity: Was the result accurate, complete, and usable? ✅ Action: Wrap skills with validation checks. Add fallback logic if a skill returns an invalid or incomplete response. 𝟯. 𝗘𝘃𝗮𝗹𝘂𝗮𝘁𝗲 𝘁𝗵𝗲 𝗣𝗮𝘁𝗵 This is where most agents break down in production: taking too many steps or producing inconsistent outcomes. Track: - Step Count: How many hops did it take to get to a result? - Behavior Consistency: Does the agent respond the same way to similar inputs? ✅ Action: Set thresholds for max steps per query. Create dashboards to visualize behavior drift over time. 𝟰. 𝗗𝗲𝗳𝗶𝗻𝗲 𝗦𝘂𝗰𝗰𝗲𝘀𝘀 𝗠𝗲𝘁𝗿𝗶𝗰𝘀 𝗧𝗵𝗮𝘁 𝗠𝗮𝘁𝘁𝗲𝗿 Don’t just measure token count or latency. Tie success to outcomes. Examples: - Was the support ticket resolved? - Did the agent generate correct code? - Was the user satisfied? ✅ Action: Align evaluation metrics with real business KPIs. Share them with product and ops teams. Make it measurable. Make it observable. Make it reliable. That’s how enterprises scale AI agents. Easier said than done.

  • View profile for Vin Vashishta
    Vin Vashishta Vin Vashishta is an Influencer

    AI Strategist | Monetizing Data & AI For The Global 2K Since 2012 | 3X Founder | Best-Selling Author

    203,448 followers

    Vendors say, “AI coding tools are writing 50% of Google’s code.” I say, “Autocomplete or IntelliSense was writing about 25% of Google’s code, and AI made it twice as effective.” When it comes to measuring AI’s ROI, real-world benchmarks are critical. Always compare the current state to the future state to calculate value instead of just looking at the future state. Most companies are overjoyed to see that AI coding tools write 30% of their code, but when they realize that vanilla IDEs with basic autocomplete could do 25%, the ROI looks less impressive. 5% rarely justifies the increased licensing and token costs. That’s the reality I have found with about half of the AI tools I pilot with clients. They work, but the improvement over the current state isn’t worth their price. I have used the same method to measure ROI for almost a decade. 1️⃣ Benchmark the current process performance using value outcomes. 2️⃣ Propose a change to the current process that introduces technology/new technology into the workflow. 3️⃣ Quantify the expected change in outcomes and value delivered with the new process/workflow. 4️⃣ Make the update and measure actual outcomes. If there’s a difference between expected vs. actual, find the root cause and fix it if possible. Measuring AI ROI is simple with the right framework. It’s also easier to help business leaders make better decisions about technology purchases, customer-facing features, and internal productivity initiative selection. I would rather see a benchmark like, percentage of code generated from text prompts vs. the percentage of code recommended by autocomplete. That benchmarks the reengineered process against the old one. AI process reengineering (AI tools augmenting people performing an optimized workflow) is where I see the greatest ROI. Shoehorning AI tools into the current process typically delivers a fraction of the potential ROI.

  • View profile for Supreet Kaur
    Supreet Kaur Supreet Kaur is an Influencer

    LinkedIn Top Voice 2024,2025 | Data & AI Solutions Architect | International Speaker | Patent Holder | Building Gen AI Solutions for Financial Services | EB-2 NIW & EB-1A Recipient

    19,777 followers

    The #1 thing I had to "unlearn" to become a holistic data scientist. It was all about how I thought about metrics. I used to prioritize model metrics like accuracy and precision. However, I've realized this 4-step approach provides a 360-degree view of your AI solution: 1. Model Metrics: The technical side: accuracy, precision, etc., to quantify your model's performance. 2. Business Metrics: These are often the most challenging to define, yet they are absolutely crucial. How is this AI solution impacting the business? Think of metrics like Net New Customers, Retention Rate, etc., to demonstrate the real business impact. 3. Operational Metrics: Once your solution is in production, these metrics become your guideposts, ensuring reliability and scalability. They track factors like latency, throughput, and downtime, providing you with the assurance that your solution operates smoothly at scale. 4. Ethical Metrics: Ensure your solution respects privacy and safeguards against misuse. Ask yourself: Is customer data protected? Are there safeguards against bad actors? Is the AI solution diverse? What would you like to add to the list? P.S: This is my 14th post in my '100 days of LLMs' series. Follow along to join the journey. #data #ai

Explore categories