Tips for Preparing for Post-Quantum Cryptography

Explore top LinkedIn content from expert professionals.

  • View profile for Dr. Paul de Souza

    Founder President at Cyber Security Forum Initiative (CSFI.US) National Security Professional | Advisor | University Professor

    49,802 followers

    🔑"𝐇𝐚𝐫𝐯𝐞𝐬𝐭 𝐍𝐨𝐰, 𝐃𝐞𝐜𝐫𝐲𝐩𝐭 𝐋𝐚𝐭𝐞𝐫" (𝐇𝐍𝐃𝐋) attacks intercept RSA-2048 or ECC-encrypted files, stockpiling them for future decryption. Once a powerful quantum computer comes online, they can unlock those archives in hours, exposing years’ worth of secrets. This silent threat targets everything from personal records to diplomatic communications. 🔐 📌 HOW CAN CYBERSECURITY LEADERS AND EXECUTIVES PREPARE? 🎯🎯𝐁𝐮𝐢𝐥𝐝 𝐂𝐫𝐲𝐩𝐭𝐨𝐠𝐫𝐚𝐩𝐡𝐢𝐜 𝐀𝐠𝐢𝐥𝐢𝐭𝐲: Ensure your systems can swiftly swap out cryptographic algorithms without extensive re-engineering. 𝐂𝐫𝐲𝐩𝐭𝐨-𝐚𝐠𝐢𝐥𝐢𝐭𝐲 𝐢𝐬 𝐭𝐡𝐞 𝐚𝐛𝐢𝐥𝐢𝐭𝐲 𝐭𝐨 𝐫𝐚𝐩𝐢𝐝𝐥𝐲 𝐭𝐫𝐚𝐧𝐬𝐢𝐭𝐢𝐨𝐧 𝐭𝐨 𝐮𝐩𝐝𝐚𝐭𝐞𝐝 𝐞𝐧𝐜𝐫𝐲𝐩𝐭𝐢𝐨𝐧 𝐬𝐭𝐚𝐧𝐝𝐚𝐫𝐝𝐬 𝐚𝐬 𝐭𝐡𝐞𝐲 𝐛𝐞𝐜𝐨𝐦𝐞 𝐚𝐯𝐚𝐢𝐥𝐚𝐛𝐥𝐞. Designing for agility now will let you plug in PQC algorithms (or other replacements) with minimal disruption later. 🎯𝐈𝐦𝐩𝐥𝐞𝐦𝐞𝐧𝐭 𝐇𝐲𝐛𝐫𝐢𝐝 𝐂𝐫𝐲𝐩𝐭𝐨𝐠𝐫𝐚𝐩𝐡𝐲: Do not wait for the full PQC rollout. 👉 𝐒𝐭𝐚𝐫𝐭 𝐮𝐬𝐢𝐧𝐠 𝐡𝐲𝐛𝐫𝐢𝐝 𝐞𝐧𝐜𝐫𝐲𝐩𝐭𝐢𝐨𝐧 𝐍𝐎𝐖! Combine classic schemes like ECDH or RSA with a post-quantum algorithm (e.g. a dual key exchange using ECDH + Kyber). 🎯𝐌𝐚𝐢𝐧𝐭𝐚𝐢𝐧 𝐚 𝐂𝐫𝐲𝐩𝐭𝐨𝐠𝐫𝐚𝐩𝐡𝐢𝐜 𝐁𝐢𝐥𝐥 𝐨𝐟 𝐌𝐚𝐭𝐞𝐫𝐢𝐚𝐥𝐬 (𝐂𝐁𝐎𝐌): 👉𝐈𝐧𝐯𝐞𝐧𝐭𝐨𝐫𝐲 𝐚𝐥𝐥 𝐜𝐫𝐲𝐩𝐭𝐨𝐠𝐫𝐚𝐩𝐡𝐢𝐜 𝐚𝐬𝐬𝐞𝐭𝐬 𝐢𝐧 𝐲𝐨𝐮𝐫 𝐨𝐫𝐠𝐚𝐧𝐢𝐳𝐚𝐭𝐢𝐨𝐧: algorithms, key lengths, libraries, certificates, and protocols. A CBOM provides visibility into where vulnerable algorithms (like RSA/ECC) are used and helps prioritize what to fix. 🎯🎯𝐀𝐥𝐢𝐠𝐧 𝐰𝐢𝐭𝐡 𝐍𝐈𝐒𝐓’𝐬 𝐐𝐮𝐚𝐧𝐭𝐮𝐦 𝐌𝐢𝐠𝐫𝐚𝐭𝐢𝐨𝐧 𝐑𝐨𝐚𝐝𝐦𝐚𝐩: Follow expert guidance for a structured transition. 𝐓𝐡𝐞 𝐔.𝐒. 𝐠𝐨𝐯𝐞𝐫𝐧𝐦𝐞𝐧𝐭 (𝐂𝐈𝐒𝐀, 𝐍𝐒𝐀, 𝐚𝐧𝐝 𝐍𝐈𝐒𝐓) 𝐚𝐝𝐯𝐢𝐬𝐞𝐬 𝐞𝐬𝐭𝐚𝐛𝐥𝐢𝐬𝐡𝐢𝐧𝐠 𝐚 𝐪𝐮𝐚𝐧𝐭𝐮𝐦-𝐫𝐞𝐚𝐝𝐢𝐧𝐞𝐬𝐬 𝐫𝐨𝐚𝐝𝐦𝐚𝐩, starting with a thorough cryptographic inventory and risk assessment. Keep abreast of NIST’s PQC standards timeline and recommendations.  National Institute of Standards and Technology (NIST) #𝐇𝐍𝐃𝐋 Cyber Security Forum Initiative #CSFI 🗝️ Now is the time to future-proof your encryption! 🗝️ 𝑌𝑜𝑢 𝑠ℎ𝑜𝑢𝑙𝑑𝑛'𝑡 𝑎𝑠𝑠𝑢𝑚𝑒 𝑡ℎ𝑎𝑡 𝑦𝑜𝑢𝑟 𝑑𝑎𝑡𝑎 𝑖𝑠 𝑠𝑒𝑐𝑢𝑟𝑒 𝑗𝑢𝑠𝑡 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑖𝑡 𝑖𝑠 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑...

  • 𝗗𝗮𝘆 𝟴: 𝗗𝗮𝘁𝗮 𝗦𝗲𝗰𝘂𝗿𝗶𝘁𝘆 𝗮𝗻𝗱 𝗣𝗼𝘀𝘁 𝗤𝘂𝗮𝗻𝘁𝘂𝗺 𝗥𝗲𝗮𝗱𝗶𝗻𝗲𝘀𝘀 In today’s hyper-connected world, data is the new currency and the perimeter, and it is essential to safeguard them from Cyber criminals. The average cost of a data breach reached an all-time high of $4.88 million in 2024, a 10% increase from 2023. Advances in 𝗾𝘂𝗮𝗻𝘁𝘂𝗺 𝗰𝗼𝗺𝗽𝘂𝘁𝗶𝗻𝗴 further threaten traditional cryptographic systems by potentially rendering widely used algorithms like public key cryptography insecure. Even before large-scale quantum computers become practical, adversaries can harvest encrypted data today and store it for future decryption. Sensitive data encrypted with traditional algorithms may be vulnerable to retrospective attacks once quantum computers are available. As quantum technology evolves, the need for stronger data protection grows. Google Quantum AI recently demonstrated advancements with its Willow processors, which 𝗲𝗻𝗵𝗮𝗻𝗰𝗲𝘀 𝗲𝗿𝗿𝗼𝗿 𝗰𝗼𝗿𝗿𝗲𝗰𝘁𝗶𝗼𝗻 𝘂𝘀𝗶𝗻𝗴 𝘁𝗵𝗲 𝘀𝘂𝗿𝗳𝗮𝗰𝗲 𝗰𝗼𝗱𝗲. These breakthroughs underscore the growing efficiency and scalability of quantum computers. To address these threats, Enterprises are turning to 𝗮𝗴𝗶𝗹𝗲 𝗰𝗿𝘆𝗽𝘁𝗼𝗴𝗿𝗮𝗽𝗵𝘆 to prepare for Post Quantum era. Proactive Measures for Agile Cryptography and Quantum Resistance: 1. 𝗔𝗱𝗼𝗽𝘁 𝗣𝗼𝘀𝘁-𝗤𝘂𝗮𝗻𝘁𝘂𝗺 𝗔𝗹𝗴𝗼𝗿𝗶𝘁𝗵𝗺𝘀 Transition to NIST-approved PQC standards like CRYSTALS-Kyber, CRYSTALS-Dilithium, Sphincs+. Use hybrid cryptography that combines classical and quantum-resistant methods for a smoother transition. 2. 𝗗𝗲𝘀𝗶𝗴𝗻 𝗳𝗼𝗿 𝗔𝗴𝗶𝗹𝗶𝘁𝘆 Avoid hardcoding cryptographic algorithms. Implement abstraction layers and modular cryptographic libraries to enable easy updates, algorithm swaps, and seamless key rotation. 3. 𝗔𝘂𝘁𝗼𝗺𝗮𝘁𝗲 𝗞𝗲𝘆 𝗠𝗮𝗻𝗮𝗴𝗲𝗺𝗲𝗻𝘁 Use Hardware Security Modules (HSMs) and Key Management Systems (KMS) to automate secure key lifecycle management, including zero-downtime rotation. 4. 𝗣𝗿𝗼𝘁𝗲𝗰𝘁 𝗗𝗮𝘁𝗮 𝗘𝘃𝗲𝗿𝘆𝘄𝗵𝗲𝗿𝗲 Encrypt data at rest, in transit, and in use with quantum resistant standards and protocols. For unstructured data, use format-preserving encryption and deploy data-loss prevention (DLP) tools to detect and secure unprotected files. Replace sensitive information with unique tokens that have no exploitable value outside a secure tokenization system. 5. 𝗣𝗹𝗮𝗻 𝗔𝗵𝗲𝗮𝗱 Develop a quantum-readiness strategy, audit systems, prioritize sensitive data, and train teams on agile cryptography and PQC best practices. Agile cryptography and advanced data devaluation techniques are essential for protecting sensitive data as cyber threats evolve. Planning ahead for the post-quantum era can reduce migration costs to PQC algorithms and strengthen cryptographic resilience. Embrace agile cryptography. Devalue sensitive data. Secure your future. #VISA #PaymentSecurity #Cybersecurity #12DaysofCyberSecurityChristmas #PostQuantumCrypto

  • View profile for Claudine Ogilvie
    Claudine Ogilvie Claudine Ogilvie is an Influencer

    CEO & Founder | Board Director | Data | Technology | Strategy | Innovation | Governance

    8,515 followers

    The (possible) future of Cyber security… Where Quantum Key Distribution (QKD) has completely replaced today’s Public Key Infrastructure (PKI), and within 5-15 years asymetric cryptographic algorithms are rendered entirely or partially unusable (Forrester)… but it’s not Armageddon, we can be prepared 😅 Thank you Yvette Lejins and ADAPT for a fantastic ’fireside chat’ and discussion about what CIOs and CSIOs can do now to prepare for Quantum: 🔒 Know your risk appetite: what is your migration time (to new cryptography or QKD); Security/ Data Shelf Life (time data needs to be protected); Risk exposure timeframe (I.e. when will Quantum computing crack Shores’ algorithm - take your pick of expert probabilities!) 🔒Re-design your infrastructure for cryptographic agility. Reduce the number of data encryption/decryption points to reduce the threat surface and complexity of cryptographic migration processes. 🔒 Implement post-quantum algorithms. Adopt algorithms that have been approved by NIST or an equivalent standards body to ensure the smoothest transition. 🔒Invest in capability. Less than 50% of quantum computing jobs expected to be filled by 2025 (McKinsey & Company) Tenar Larsen Jim Berry Matt Boon Maushumi (Maya) Mazid Jenny Francis David Gee GAICD Nick Haigh Jayden Cooke Gabby Fredkin #adaptsecurityedge #cyberrisk #riskappetite #quantumcomputing

Explore categories