
Algebraic Effects for Functional Programming
(Type Directed Compilation of Row-typed Algebraic Effects)

Microsoft Technical Report, August 2016

Daan Leijen
Microsoft Research
daan@microsoft.com

Abstract
Algebraic effect handlers, are recently gaining in popularity
as a purely functional approach to modeling effects. In this
article, we give an end-to-end overview of practical algebraic
effects in the context of a compiled implementation in the
Koka language. In particular, we show how algebraic effects
generalize over common constructs like exception handling,
state, iterators and async-await. We give an effective type
inference algorithm based on extensible effect rows using
scoped labels, and a direct operational semantics. Finally,
we show an efficient compilation scheme to common runtime
platforms (such as JavaScript, the JVM, or .NET) using a
type directed selective CPS translation.

1. Introduction
Algebraic effects (introduced by Plotkin and Power in
2002 [34]) and algebraic effect handlers (introduced by
Plotkin and Pretnar in 2009 [33]), are recently gaining in
popularity as a purely functional approach to modeling ef-
fects. As a restriction on general monads, algebraic effects
come with various advantages: they can be freely composed,
and there is a natural separation between their interface (as
a set of operations) and their semantics (as a handler).

At this time, implementations are usually based on li-
braries [18, 19, 49], or interpreted run-times [3, 16]. This is
unfortunate, because we believe that algebraic effect han-
dlers have wide applicability and should be considered as
a basic mechanism for handling effects and control-flow
in a wide range of languages – including languages like
JavaScript and C#, which have added various specialized
constructs over the years for concepts that are naturally ex-
pressed using algebraic effects.

In this article, we give an end-to-end overview of practical
algebraic effects in the context of a compiled implementation
in the Koka language. In particular:

• In Section 2 we present a language design for algebraic
effects, and show how algebraic effects subsume many
control-flow constructs that are specialized in other lan-
guages, e.g. exceptions, state, iterators, async-await, etc.
In particular, iterators and async-await are complex con-
structs that can lead to subtle interactions with other fea-
tures and require complex compilation mechanisms [4].
Being able to generalize over them using a single well-
founded abstraction is a huge win.

• Typing algebraic effects, such that we can check what
effects functions can have, and can check that all effects

are handled in a program, is a challenge. We show in Sec-
tion 3 how we can leverage the row-types of Koka, based
on scoped labels [22], to implement sound and complete
type inference for algebraic effects. A problem with many
effect systems is that the inferred types become very large
or difficult to understand – we have extensive experience
with large effectful programs that suggests that the row-
type approach of Koka works well in practice.

• In Section 3.2 we show a novel approach to simplify
polymorphic effect types. This turns out to be beneficial
for an efficient CPS translation too.

• Operational semantics for algebraic effects in the litera-
ture are usually given in a continuation style calculus [3,
18] – this simplifies semantics and is convenient when rea-
soning about effects. In contrast, we give a more direct
operational semantics to algebraic effects using syntacti-
cal contexts [48] in Section 4. This does not use continu-
ations but captures the execution context explicitly. For
compilation purposes we believe our approach is more
convenient. We also prove that well-typed programs can-
not go ‘wrong’ under these semantics.

• Section 5 describes efficient compilation of algebraic ef-
fects to common runtime platforms (like JavaScript)
where we do not have full control over the runtime stack.
We show how we can use a type directed selective CPS
translation to compile effect handlers efficiently. It turns
out that the standard CPS translation does not work
for functions with polymorphic effect variables, and in
Section 5.3.2 we show a novel technique where we use
polymorphic code duplication to dynamically pick the
correct runtime representation of such functions.

There is a full implementation of algebraic effects in Koka,
see [25] for detailed instructions on how to download it and
program with algebraic effects – please try it out.

2. Overview
We are going to demonstrate algebraic effects in the context
of Koka – a call-by-value programming language with a type
inference system that tracks effects. The type of a function
has the form τ→ ϵ τ ′ signifying a function that takes an
argument of type τ , returns a result of type τ ′ and may
have a side effect ϵ. We can leave out the effect and write
τ→ τ ′ as a shorthand for the total function without any side
effect: τ→⟨⟩ τ ′. A key observation on Moggi’s early work on
monads [30] was that values and computations should be
assigned a different type. Koka applies that principle where

1

effect types only occur on function types; and any other type,
like int, truly designates an evaluated value that cannot have
any effect.

Koka has many features found in languages like ML
and Haskell, such as type inference, algebraic data types
and pattern matching, higher-order functions, impredicative
polymorphism, open data types, etc. The pioneering feature
of Koka is the use of row types with scoped labels to
track effects in the type system, striking a balance between
conciseness and simplicity. The system works very well in
practice and has been used to write significant programs [24].
In this article we extend the original system [23] to use
algebraic effects and handlers to define new effect types.

In the following sections we give various examples of pro-
gramming with algebraic effects, where we give particular
attention to cases where algebraic effects subsume control-
flow constructs that are specialized in many other languages,
such as exceptions, iterators, and async-await. The inter-
ested reader may take a quick look ahead at Figure 4 to see
the precise operational semantics of algebraic effect han-
dlers. For the sake of concreteness, we show all examples
in the current Koka implementation but we stress that the
techniques shown here apply generally and can be applied
in many other languages.

There are various ways to understand algebraic effects
and handlers. As described originally [33, 34], the signature
of the effect operations forms a free algebra which gives rise
to a free monad. Free monads provide a natural way to give
semantics to effects, where handlers describe a fold over the
algebra of operations [42]. Using a more operational per-
spective, we can also view algebraic effects as resumable ex-
ceptions (or perhaps as a more structured form of delimited
continuations). We therefore start our overview by modeling
exceptional control flow.

2.1. Exceptions as algebraic effects
The exception effect exc can be defined in Koka as:

effect exc {
raise(s : string) : a

}

This defines a new effect type exc with a single primitive
operation, raise with type string → exc a for any a (Koka
uses single letters for polymorphic type variables). The raise
operation can be used just like any other function:

fun safediv(x, y) {
if (y==0) then raise(”divide by zero”) else x / y

}

Type inference will infer the type (int,int) → exc int prop-
agating the exception effect. Up to this point we have in-
troduced the new effect type and the operation interface,
but we have not yet defined what these operations mean.
The semantics of an operation is given through an algebraic
effect handler which allows us to discharge the effect type.

The standard way to discharge exceptions is by catching
them, and we can write this using effect handlers as:

fun catch(action,h) {
handle(action) {

raise(s)→ h(s)
}

}

The handle construct for an effect takes an action to evaluate
and a set of operation clauses. In the above example, the
inferred type of catch is:

catch : (action : () → ⟨exc | e⟩ a, h : string → e a) → e a

The type is polymorphic in the result type a and its final
effects e, where the action argument can have the exc effect
and possibly more effects e. As we can see, the handle
construct discharged the exc effect and the final result effect
is just e. For example,

fun zerodiv(x,y) {
catch({ safediv(x,y) }, fun(s){ 0 })

}

has type (int,int) → ⟨⟩ int and is a total function. Note
that the Koka syntax { safediv(x,y) } denotes an anonymous
function that takes no arguments.

Besides clauses for each operation, each handler can have
a return clause too: this is applied to the final result of the
handled action. In the previous example, we just passed the
result unchanged, but in general we may want to apply
some transformation. For example, we can transform any
exceptional computations into maybe values:

fun to-maybe(action) {
handle(action) {

return x → Just(x)
raise(s) → Nothing

}}

with the inferred type (() → ⟨exc | e⟩ a) → e maybe⟨a⟩.
The handle construct is actually syntactic sugar over the

more primitive handler construct:

handle(action) { ... } ≡ (handler{ ... })(action)

A handler just takes a set of operation clauses for an effect,
and returns a function that discharges the effect over a given
action. This allows us to express to-maybe more concisely as
a (function) value:

val to-maybe = handler {
return x → Just(x)
raise(s) → Nothing

}

with the same type as before.
Just like monadic programming, algebraic effects allows

us to conveniently program with exceptions without having
to explicitly plumb maybe values around. When using mon-
ads though we have to provide a Monad instance with a
bind and return, and we need to create a separate discharge
function. In contrast, with algebraic effects we only define
the operation interface and the discharge is implicit in the
handler definition.

2.2. State: resuming operations
The exception effect is somewhat special as it never resumes:
any operations following the raise are never executed. Usu-
ally, operations will resume with a specific result instead of
cutting the computation short. For example, we can have an
input effect:

2

effect input {
getstr() : string

}

where the operation getstr returns some input. We can use
this as:

fun hello() {
val name = getstr()
println(”Hello ” + name)

}

An obvious implementation of getstr gets the input from the
user, but we can just as well create a handler that takes a
set of strings to provide as input, or always returns the same
string:

val always-there = handler {
return x → x
getstr() → resume(”there”)

}

Every operation clause in a handler brings an identifier
resume in scope which takes as an argument the result of
the operation and resumes the program at the invocation
of the operation – if the resume occurs at the tail position
(as in our example) it is much like a regular function call.
Executing always-there(hello) will output:

> always-there(hello)
Hello there

As another example, we can define a stateful effect:

effect state⟨s⟩ {
get() : s
put(x : s) : ()

}

The state effect is polymorphic over the values s it stores.
For example, in

fun counter() {
val i = get()
if (i ≤ 0) then () else {

println(”hi”)
put(i - 1);
counter()

}
}

the type becomes () → ⟨state⟨int⟩,console,div | e⟩ () with the
state instantiated to int. To define the state effect we could
use the built-in state effect of Koka, but a cleaner way is to
use parameterized handlers. Such handlers take a parameter
that is updated at every resume. Here is a possible definition
for handling state:

val state = handler(s) {
return x → (x,s)
get() → resume(s,s)
put(s’) → resume(s’,())

}

We see that the handler binds a parameter s (of the polymor-
phic type s), the current state. The return clause returns the
final result tupled with the final state. The resume function

in a parameterized handler takes now multiple arguments:
the first argument is the handler parameter used when han-
dling the resumption, while the last argument is the result of
the operation. The get operation leaves the current state un-
changed, while the put operation resumes with its passed-in
state argument. The function returned by the handler con-
struct now takes the initial state as an extra argument:

state : (x : s, action : () → ⟨state⟨s⟩ | e⟩ a) → e (a,s)

and we can use it as:

> state(2,counter)
hi
hi

2.3. Iterators
Many contemporary languages, like JavaScript or C#, have
special syntax and compilation rules for iterators and the
yield statement [43]. Algebraic effects generalize over this
where the yield effect can be defined as:

effect yield⟨a⟩ {
yield(item : a) : ()

}

The yield effect generalizes over the values a that are yielded.
For example, we can define an “iterator” over lists as:

fun iterate(xs : list⟨a⟩) : yield⟨a⟩ () {
match(xs) {

Nil → ()
Cons(x,xx) → { yield(x); iterate(xx) }

}}

and similarly for many data structures. Orthogonal to the
iterators, we can define handlers that handle the yielded
elements. For example, here is a generic foreach function
that applies a function f to each element that is yielded and
breaks the iteration when f returns False:

fun foreach(f : a → e bool, action : () → ⟨yield⟨a⟩ | e⟩ ()) : e () {
handle(action) {

return x → ()
yield(x) → if (f(x)) then resume(()) else ()

}}

Note how we can stop the iteration simply by not calling
resume – and that we can define this behavior orthogonal to
the definition of any particular iterator.

2.4. Ambiguity: multiple resumptions
You can enter a room once, yet leave it twice.

— Peter Landin [20, 21]
In the previous examples we looked at abstractions that
never resume (e.g. exceptions), and abstractions that re-
sume once (e.g. state and iterators). Such abstractions are
common in most programming languages. Less common are
abstractions that can resume more than once. Examples of
this behavior can usually only be found in languages that
implement some variant of callcc [45]. A nice example to
illustrate multiple resumptions is the ambiguity effect:

effect amb {
flip() : bool

}

3

where we have a flip operation that returns a boolean. As
an example, we take the exclusive or of two flip operations:

fun xor() : amb bool {
val p = flip()
val q = flip()
((p || q) && ! (p && q))

}

There are many ways we may assign semantics to flip. One
handler just flips randomly:

val coinflip = handler {
flip()→ resume(random-bool())

}

with type (action : () → ⟨amb,ndet | e⟩ a) → ⟨ndet | e⟩ a
where random-bool induced the (built-in) non-deterministic
effect ndet. A more interesting implementation though is to
return all possible results, resuming twice for each flip: once
with a False result, and once with a True result:

val amb = handler {
return x → [x]
flip() → resume(False) + resume(True)

}

with type amb : (action : () → ⟨amb | e⟩ a) → e list⟨a⟩,
discharging the amb effect and lifting the result type a to
a list⟨a⟩ of all possible results. The return clause wraps the
final result of the action in a list, while in the flip clause
we append the results of both resumptions (using +). Since
each resume is handled by the same handler, the results of
each resumption will indeed be of type list⟨a⟩. For example,
executing amb(xor) leads to:

> amb(xor)
[False,True,True,False]

Multiple resumptions should be used with care though as the
composition with other effects can sometimes be surprising.
As an example, consider a program that uses both state and
ambiguity:

fun surprising() : ⟨state⟨int⟩,amb⟩ bool {
val p = flip()
val i = get()
put(i+1)
if (i≥ 1 && p) then xor() else False

}

We can use our earlier handlers to handle the state and am-
biguity effects, but we can compose them in two ways, giving
rise to two different semantics. First, we can handle the state
outside the ambiguity handler, giving rise to a “global” state
that is shared between each ambiguous assumption.

> state(0, { amb(surprising) })
([False,False,True,True,False],2)

The final result is a tuple of a list of booleans and the
final state. Since the state is shared, only the first time
(i≥ 1 && p) is evaluated the result will be False (the first
element of the result list). On the second resumption, xor()
will be evaluated leading to the other 4 elements. If we
change the order of the handler, we effectively make the
state local to each ambiguous resumption:

> amb({ state(0,surprising) })
[(False,1),(False,1)]

and the result is now a list of tuples. and in both resumptions
of the first flip the i will be the initial state leading to two
False elements in the result list. Note how, in contrast to
general monads, algebraic effects can be composed freely
(since they are restricted to the free monad). This is quite an
improvement over previous work [41, 47] where composing
different monads required implementing a combined monad
by hand.

2.5. Asynchronous programming
Similarly to iterators, many programming languages are
adding support for async-await style asynchronous program-
ming [44]. For example, web servers written in JavaScript us-
ing NodeJS are highly asynchronous and without language
support the resulting programs are difficult to write and de-
bug due to excessive callbacks (e.g. the so-called “pyramid
of doom”). However, extending a language with async-await
is non-trivial, both in terms of semantics, as well as compila-
tion complexity where async methods need to be translated
into state-machines to simulate co-routine behavior [4].

Again, algebraic effect handlers generalize naturally over
this pattern. In contrast to the earlier examples we can
generally not implement this directly in our language but
need to use primitives of the host system. For concreteness,
we assume NodeJS as our host with a primitive to call
readline:

prim-readline : (oninput : string → ()) → io ()

which calls its argument call back on successful input. We
can now define a asynchronous effect as:

effect async {
readline() : string

}

The handler for the asynchronous effect must be effectively
surround the entire program as it relies on the outer NodeJS
event loop to re-invoke our callback when input is ready:

val outer-async = handler {
readline()→ prim-readline(resume)

}

We see that the readline clause just returns and exits the
program to the outer NodeJS event loop. However, it reg-
istered resume as the callback – effectively resuming with
the result input when available. In the Koka implementa-
tion the core library defines async as an abstract effect with
a predefined handler around the main function. The han-
dled operations are more generic such that library writers
can easily wrap any asynchronous primitives provided by
the host system. Moreover, since it is just another effect, it
composes naturally with any other algebraic effects the user
defines, such as state and exceptions.

Using asynchronous operations is straightforward now:

fun ask-age() {
println(”what is your name?”)
val name = readline() // asynchronous!
println(”hello ” + name)

}

4

Note that even though the previous example is now asyn-
chronous, the program is written in an entirely straightfor-
ward manner where the type of the program signifies asyn-
chronicity. In async-await style programming an async call
site is signaled by an await keyword and each asynchronous
method with an async keyword. This can be helpful for un-
derstanding the code. With our effect typing, the type sig-
nifies the effects code can have and the asynchronicity is
immediately apparent through the inferred types of any ex-
pression.

ask-age : () → ⟨async,console⟩ ()

The previous example does not use asynchronicity in any
essential way but in general it is used to serve multiple re-
quests interleaved where no request handler will block on
I/O operations. Moreover, the Koka core library provides
primitives like async-all to start multiple asynchronous op-
erations that are interleaved with each other.

In future work we are planning to write highly robust
asynchronous web servers using algebraic effect handlers. A
similar technique as shown here is used in multi-core OCaml
where one-shot algebraic effects are used to implement con-
currency [11].

2.6. Domain specific effects: parsing
All the examples up till now are well-known effects and are
available in various forms in other languages too. However,
we can also implement domain-specific effects. For example,
in a compiler we may have a name-supply effect that gen-
erates fresh names, a warning effect for logging warnings,
or an inference effect that maintains a typing environment.
Similar to monads, encapsulating such effects allows for ab-
straction about the particular implementation and removes
the need to explicitly deal with environments and result val-
ues.

As an example of such domain-specific effect, we show
how to implement a parse effect to implement parser combi-
nators [17, 26]. In particular, the effect will abstract over the
current input state, handling failure, and combining mul-
tiple parse results. To start, we extend the amb effect of
Section 2.4 to describe multiple parse results and failures:

effect many {
flip() : bool
fail() : a

}

Using flip we can already describe choice between two
parsers:

fun choice(p1,p2) { if (flip()) then p1() else p2() }

The choice combinator seems somewhat magical since it uses
the flip operation as an oracle but we will see that this
allows for multiple evaluation strategies. Using choice, we
can define the many combinator for parsing a sequence of
zero or more p parsers:

fun many(p) { choice({ many1(p) }, { Nil }) }
fun many1(p) { Cons(p(), many(p)) }

where many has the inferred type

many : (p : () → ⟨many,div | e⟩ a) → ⟨many,div | e⟩ list⟨a⟩

A possible handler for the many effect returns all possible
results:

val solutions = handler {
return x → [x]
fail() → []
flip() → resume(False) + resume(True)

}

Another handler is eager which returns the first successful
result:

val eager = handler {
return x → Just(x)
fail()→ Nothing
flip()→ match(resume(False)) {

Nothing → resume(True)
Just(x)→ Just(x)

}
}

Here, the False branch is taken first and the result examined
to determine whether we should explore the True branch or
not. The types of these handlers are:

fun solutions : (() → ⟨many | e⟩ a) → e list⟨a⟩
fun eager : (() → ⟨many | e⟩ a) → e maybe⟨a⟩

To do actual parsing, we are defining the parse effect with
just one operation to test if the current input satisfies a
predicate:

effect parse {
satisfy⟨a⟩(string → maybe⟨(a,string)⟩) : a

}

Note that the result type a is locally quantified, e.g. the type
of satisfy is

satisfy : forall⟨a⟩ (string → maybe⟨(a,string)⟩) → parse a

A handler for the parse effect can be defined as:

val parse = handler(input) {
return x → (x,input)
satisfy(p) → match(p(input)) {

Nothing → fail()
Just((x,rest)) → resume(rest,x)

}
}

with type (string, () → ⟨parse,many | e⟩ a) → ⟨many | e⟩ (a,string).
In this handler, we use fail operation from the many effect
to handle failure. The handler is parameterized with the
current input string. The final result is tupled with any re-
maining input. Using satisfy we can create for example a
symbol or digit parser:

5

fun symbol(c : char) : parse char {
satisfy(fun(input) { match(input.first) {

Just((d,rest)) | d == c → Just((c,rest))
_ → Nothing

})
}

fun digit(c : char) : parse int {
satisfy(fun(input) { match(input.first) {

Just((d,rest)) | d.digit? → Just((d - ’0’).int,rest))
_ → Nothing

})
}

Using digit we can parser numbers using the many1 combi-
nator:

fun number() {
many1(digit).foldl(0, fun(n,d) { 10 *n + d })

}

With the previous combinators, we can now start parsing
simple expressions:

fun expr() : ⟨div,parse,many⟩ int {
choice {

val i : int = term()
symbol(’+’)
val j = term()
i+ j

}
{ term() }

}

fun term() {
choice {

val i : int = factor()
symbol(’*’)
val j = factor()
i * j

}
{ factor() }

}

fun factor() {
choice(number) {

symbol(’(’)
val i = expr()
symbol(’)’)
i

}
}

Using the expression parser expr, we can use the the solu-
tions and parse handlers to parse simple expressions:

> solutions{ parse(”1+2*3”, expr) }
[(7,””),(3,”*3”),(1,”+2*3”)]

Using the eager handler, only the longest parse is returned:

> eager{ parse(”1+2*3”, expr) }
Just((7,””))

Expressions e ::= e(e) application
| val x = e; e binding
| handle{h}(e) handler
| v value

Values v ::= x | c | op | λx. e

Clauses h ::= return x→ e
| op(x)→ e; h op ̸∈ h

Types τ k ::= αk type variable
| ck0⟨τ k1

1 , ..., τ kn
n ⟩ k0 = (k1, ..., kn)→ k

Kinds k ::= ∗ | e values, effects
| k effect constants
| (k1, ..., kn)→ k type constructor

Type scheme σ ::= ∀αk. σ | τ∗

Constants (), bool :: ∗ unit, booleans
(_→ _ _) :: (∗, e, ∗)→∗ functions
⟨⟩ :: e empty effect
⟨_ | _⟩ :: (k, e)→ e effect extension

Total functions τ1 → τ2
.
= τ1 →⟨⟩ τ2

Effects ϵ
.
= τ e

Effect variables µ
.
= αe

Effect labels l .
= ck⟨τ1, ..., τn⟩ k = (...)→ k

Closed effects ⟨l1, ..., ln⟩ .
= ⟨l1, ..., ln | ⟨⟩ ⟩

Effect extension ⟨l1, ..., ln | ϵ⟩ .
= ⟨l1 | ... ⟨ln | ϵ⟩ ... ⟩

Figure 1. Syntax of expressions, types, and kinds

3. Type rules
In this section we give a formal definition of our polymorphic
row-based effect system for the core calculus of Koka. The
calculus and its type system has been in use for many years
now and has been developed from the start using effect
types based on rows with scoped labels [22]. Originally, user-
defined effects were described using a monadic approach [47]
but it turns out that algebraic effects fit the original type
system very well with almost no changes. The new system
based on algebraic effects is much simpler and allows for free
composition of user defined effects.

Figure 1 defines the syntax of types and expressions.
The expression grammar is straightforward but we dis-
tinguish values v from expressions that canexper have ef-
fects. Values consist of variables x, constants c, operations
op, and lambda’s. Expression include handler expressions
handle{h}(e) where h is a set of operation clauses. The
handler construct of the previous section can be seen as
syntactic sugar, where:
handler{h} ≡ λf. handle{h}(f())
For simplicity we assume that all operations take just one
argument. We also use membership notation op(x)→ e ∈ h
to denote that h contains a particular operation clause.
Sometimes we shorten this to op ∈ h.

Well-formed types are guaranteed through kinds k which
we denote using a superscript, as in τ k. We have the usual
kinds for value types ∗ and type constructors→, but because
we use a row based effect system, we also have kinds for effect
rows ϵ, and effect constants (or effect labels) k. When the

6

ϵ∼= ϵ [eq-refl]

ϵ1 ∼= ϵ2

⟨l | ϵ1⟩∼= ⟨l | ϵ2⟩
[eq-head]

ϵ1 ∼= ϵ2 ϵ2 ∼= ϵ3

ϵ1 ∼= ϵ3
[eq-trans]

l1 ̸∼= l2
⟨l1 | ⟨l2 | ϵ⟩ ⟩∼= ⟨l2 | ⟨l1 | ϵ⟩ ⟩

[eq-swap]

c ̸= c′

c⟨τ1, ..., τn⟩ ̸∼= c′⟨τ ′
1, ..., τ

′
n⟩

[uneq-label]

Figure 2. Row equivalence

kind of a type is immediately apparent or not relevant, we
usually leave it out. For clarity, we use α for regular type
variables, and µ for effect type variables. Similarly, we use ϵ
for effect row types, and l for effect constants/labels.

Effect types are defined as a row of effect labels l. Such
row is either empty ⟨⟩, a polymorphic effect variable µ, or an
extension of an effect ϵ with a label l, written as ⟨l | ϵ⟩. Effect
labels must start with a constant and are never polymorphic.
By construction, effect type are either a closed effect of the
form ⟨l1, ..., ln⟩, or an open effect of the form ⟨l1, ..., ln |µ⟩.

We cannot use direct equality on types since we would
like to regard effect rows equivalent up to the order of their
effect constants. Figure 2 defines an equivalence relation (∼=)
between effect rows. This relation is essentially the same as
for the _scoped labels record system [22] with the differ-
ence that we ignore the type arguments when comparing
labels. By reusing the scoped labels approach, we also get a
deterministic and terminating unification algorithm which is
essential for type inference. Moreover, in contrast to other
record calculi [14, 27, 36, 40], our approach does not re-
quire extra constraints, like lacks or absence constraints, on
the types which simplifies the type system significantly. The
system also allows duplicate labels, where an effect ⟨exc, exc⟩
is legal and different from ⟨exc⟩. There are some use-cases
for this but in practice we have not found many uses for
duplicate effects (nor any drawbacks).

3.1. Type inference
The type rules for our calculus is given in Figure 3. A type
environment Γ maps variables to types and can be extended
using a comma: if Γ′ equals Γ, x : σ, then Γ′(x) = σ and
Γ′(y) = Γ(y) for any x ̸= y. A type rule Γ ⊢ e : τ | ϵ states
that under environment Γ, the expression e has type τ with
possible effects ϵ.

The type rules are quite standard. The rule var derives
the type of a variable with an arbitrary effect ϵ. We may
have expected to derive only the total effect ⟨⟩ since the
evaluation of a variable has no effect at all. However, there
is no rule that lets one upgrade the final effect and instead
we need to pick the final effect right away. Another way to
look at this is that since the variable evaluation has no effect,
we are free to assume any arbitrary effect.

The lam rule is similar in that it assumes any effect ϵ
for the result since the evaluation of a lambda is a value.
At this rule, we also see how the effect derived for the body
of a lambda ϵ′ shifts to the derived function type τ1 → ϵ′ τ2.
Rule app is standard and derives an effect ϵ requiring that
its premises derive the same effect as the function effect.

Finally rules inst and gen instantiate and generalize
types. The generalization rule has an interesting twist as
it requires the derived effect to be total. When combining
our calculus with polymorphic mutable reference cells, this
is required to ensure a sound semantics. This is the semantic

equivalent to the syntactic value restriction in ML. In our
core calculus we cannot define polymorphic reference cells
directly so the restriction is not necessary persé but it seems
good taste to leave it in as it is required for the full Koka
language.

Finally, the handle rule types effect handlers. We assume
that effect declarations populate an initial environment Γ0

with the types of declared operations, and also a signature
environment Σ that maps declared effect labels to the set
of operations that belong to it. We also assume that all
operations have unique names, such that given the operation
names, we can uniquely determine to which effect l they
belong.

The rule handle requires that all operations in the sig-
nature Σ(l) are part of the handler, and we reject handlers
that do not handle all operations that are part of the effect
l. The return clause is typed with x : τ where τ is the re-
sult type of the handled action. All clauses must have the
same result type τr and effect ϵ. For each operation clause
opi(xi)→ ei we first look up the type of opi in the environ-
ment as τi →⟨l⟩ τ ′

i , and bind xi to the argument type of the
operations, and bind resume to the function τ ′

i → τr where
the argument type of resume is the result type of the op-
eration. The derived type of the handler is a function that
discharges the effect type l.

3.2. Simplifying types
The rule app is a little surprising since it requires both the
effects of the function and the arguments to match. This only
works because we set things up to always be able to infer the
effects of functions that are ‘open’ – i.e. have a polymorphic
µ in their tail. For example, consider the identity function:
id = λx. x

If we assign the valid type ∀α. α→⟨⟩α to the id function,
we get into trouble quickly. For example, the application
id(raise(”hi”)) would not type check since the effect of id
is total while the effect of the argument contains exc. Of
course, the type inference algorithm always infers a most
general type for id, namely ∀αµ. α→µα which has no such
problems.

In practice though we wish to simplify the types more
and leave out ‘obvious’ polymorphism. In Koka we adopted
two extra type rules to achieve this. The first rule opens
closed effects of function types:

Γ ⊢ e : τ1 →⟨l1, ..., ln⟩ τ2 | ϵ
Γ ⊢ e : τ1 →⟨l1, ..., ln | ϵ′⟩ τ2 | ϵ

[open]

With this rule, we can type the application id(raise(”hi”))
even with the simpler type assigned to id as we can open
the effect type of id using the open rule to match the effect
of raise(”hi”). We combine this with a closing rule (which is
just an instance of inst/gen):

Γ ⊢ e : ∀µα. τ1 →⟨l1, ..., ln |µ⟩ τ2 | ϵ
µ ̸∈ ftv(τ1, τ2, l1, ..., ln)

Γ ⊢ e : ∀α. τ1 →⟨l1, ..., ln⟩ τ2 | ϵ
[close]

During inference, the rule close is applied (when possible)
before assigning a type to a let-bound variable. In general,
such technique would lead to incompleteness where some
programs that were well-typed before, may now be rejected
since close assigns a less general type. However, due to
open this is not the case: at every occurrence of such let-
bound variable the rule open can always be applied (possibly
surrounded by inst/gen) to lead to the original most general

7

Γ(x) = σ

Γ ⊢ x : σ | ϵ [Var]

Γ, x : τ1 ⊢ e : τ2 | ϵ′

Γ ⊢ λx. e : τ1 → ϵ′ τ2 | ϵ
[Lam]

Γ ⊢ e1 : σ | ϵ Γ, x : σ ⊢ e2 : τ | ϵ
Γ ⊢ val x = e1; e2 : τ | ϵ [Let]

Γ ⊢ e1 : τ2 → ϵ τ | ϵ Γ ⊢ e2 : τ2 | ϵ
Γ ⊢ e1(e2) : τ | ϵ [App]

Γ ⊢ e : τ | ⟨⟩ α ̸∈ ftv(Γ)
Γ ⊢ e : ∀α. τ | ϵ [Gen]

Γ ⊢ e : ∀α. τ | ϵ
Γ ⊢ e : τ [α 7→ τ] | ϵ [Inst]

Γ ⊢ e : τ | ⟨l|ϵ⟩ Σ(l) = {op1, ..., opn}
Γ, x : τ ⊢ er : τr | ϵ Γ ⊢ opi : τi →⟨l⟩ τ ′

i | ⟨⟩
Γ, resume : τ ′

i → ϵ τr, xi : τi ⊢ ei : τr | ϵ
Γ ⊢ handle{ op1(x1)→ e1; ...; opn(xn)→ en; return x→ er }(e) : τr | ϵ

[Handle]

Figure 3. Type rules

type – i.e. even though the types are simplified, the set of
typeable programs is unchanged.

We have significant experience with the Koka type system
in practice with several large programs (up to 14.000 loc)
and type simplification works very well in practice. As we
will see later in Section 5, the open rule actually proves
essential for an efficient CPS translation of algebraic effects.

3.3. Type inference
The type system as defined is closely related to the core
type system originally presented for Koka [23], with the
main differences that this paper uses a simpler presentation
without treating isolated state, and we added the rule for
handlers. Since the handler rule is straightforward and can
be encoded using regular applications and lambdas, the
results in [23] carry over directly.

In particular, we can define syntax directed type rules
that are sound and complete with respect to the rules
in Figure 3, and there exists a sound and complete type
inference algorithm. Due to this, it was very straightforward
to change the Koka compiler to type check algebraic effects
and handlers as there were no changes to the core type
inference algorithm. The main difficulties that needed to be
overcome were found in an efficient compilation to common
runtime platforms as described in Section 5.

4. Operational semantics
In this section we define a precise semantics for our core
language with algebraic effect handlers, and show that well-
typed programs cannot go ‘wrong’. Even though algebraic
effects are originally conceived with a semantics in category
theory, we will give a more regular operational semantics.
The main reason to do so is that a direct operational seman-
tics is more useful as a guidance for efficient compilation as
described in Section 5. Moreover, using a direct operational
semantics may help exposing algebraic effects to a wider
audience and allows us to use a traditional style proof of
soundness.

The operational semantics of our calculus is given in
Figure 4 and consists of just five evaluation rules. We use
two evaluation contexts: the E context is the usual one for
a call-by-value lambda calculus. The Xop context is used
for handlers. In particular, it evaluates down through any
handlers that do not handle the operation op. This is used
to express concisely that the ‘nearest enclosing handler’
handles particular operations.

The first three reduction rules, (δ), (β), and (let) are
the standard rules of call-by-value evaluation. The final two
rules evaluate handlers. Rule (return) applies the return
clause of a handler when the argument is fully evaluated.

Note that this evaluation rule subsumes both lambda- and
let-bindings and we can define both as a reduction to a
handler without any operations:

(λx. e1)(e2) ≡ handle{return x→ e1}(e2)

and

val x = e1; e2 ≡ handle{return x→ e2}(e1)

The next rule, (handle), is where all the action is. Here
we see how algebraic effect handlers are closely related to
delimited continuations as the evaluation rules captures a
delimited ’stack’ Xop[op(v)] under the handler h. Using a
Xop context ensures by construction that only the innermost
handler containing a clause for op, can handle the operation
op(v). Evaluation continues with the expression ϵ but besides
binding the parameter x to v, also the resume variable is
bound to the continuation: λy. handle{h}(Xop[y]). Applying
resume results in continuing evaluation at Xop with the
supplied argument as the result. Moreover, the continued
evaluation occurs again under the handler h.

Resuming under the same handler is important as it en-
sures that our semantics correspond to the original categor-
ical interpretation of algebraic effect handlers as a fold over
the effect algebra [33]. If the continuation is not resumed un-
der the same handler, it behaves more like a case statement
doing only one level of the fold. Such handlers are sometimes
called shallow handlers [18, 28].

For this article we do not formalize parameterized han-
dlers as shown in Section 2.2. However the reduction rule
is straightforward. For example, a handler with a single pa-
rameter p is reduced as:

handle{h}(p = vp)(Xop[op(v)])
−→ { op(v)→ e ∈ h }

e[x 7→ v, p 7→ vp, resume 7→λq y. handle{h}(p = q)(Xop[y])]

Using the reduction rules of Figure 4 we can define the eval-
uation function (7−→), where E[e] 7−→E[e′] iff e−→ e′. We
also define the function 7−→→ as the reflexive and transitive
closure of 7−→.

4.1. Optimizing tail-resumptions
From the reduction rules, we can already see some possi-
ble optimizations that can be used to compiler handlers effi-
ciently. For example, if a handler never resumes, we can treat
it similarly to how exceptions are handled and do not need
to capture the execution context. An important other opti-
mization can apply to tail resumptions, i.e. a resume that
occurs in the tail position of an operation clause. Suppose
we have an operations clause h with op(x)→ resume(e) ∈ h

8

Evaluation contexts:
E ::= [] |E(e) | v(E) | val x = E; e | handle{h}(E)

Xop ::= [] |Xop(e) | v Xop | val x = Xop; e
| handle{h}(Xop) if op ̸∈ h

Reduction rules:
(δ) c(v) −→ δ(c, v) if δ(c, v) is defined
(β) (λx. e)(v) −→ e[x 7→ v]
(let) val x = v; e −→ e[x 7→ v]

(return) handle{h}(v) −→ e[x 7→ v]
where

return x→ e ∈ h

(handle) handle{h}(Xop[op(v)]) −→ e[x 7→ v, resume 7→λy. handle{h}(Xop[y])]
where

op(x)→ e ∈ h

Figure 4. Reduction rules and evaluation contexts

and resume ̸∈ fv(e). In that case, we can derive:

handle{h}(Xop[op(v)])
−→

resume(e)[x 7→ v, resume 7→λy. handle{h}(Xop[y])]
−→

(λy. handle{h}(Xop[y]))(e[x 7→ v])
−→∗ { e[x 7→ v]−→∗ v′ }

(λy. handle{h}(Xop[y]))(v′)
−→

handle{h}(Xop[v′])

That means that in an implementation we do not need to
capture and restore the context Xop at all but can directly
evaluate the operation expression as if it was a regular
function call. Of course, special precautions must be taken
that any operations yielded in the evaluation of e[x 7→ v] are
not handled by any handler in handle{h}(Xop[]).

4.2. Comparison with delimited continuations
Shan [39] has shown that various variants of delimited con-
tinuations can be defined in terms of each other. Follow-
ing Kammar et al. [18], we can define a variant of Danvy
and Filinski’s [7] shift and reset operators, called shift0 and
reset0, as

reset0(Xs[shift0(λk. e)])−→ e[k 7→λx. reset0(Xs[x])]

where we write Xs for a context that does not contain a
reset0. Therefore, the shift0 captures the continuation up
to the nearest enclosing reset0. Just like handlers, the cap-
tured continuation is itself also wrapped in a reset0. Unlike
handlers though, the handling is done by the shift0 directly
instead of being done by the delimiter reset0. From the re-
duction rule, we can easily see that we can implement de-
limited continuations using algebraic effect handlers, where
shift0 is an operation and Xs ≡Xshift0 :

reset0(e) .
= handle{ shift0(f)→ f(resume) }(e)

Using this definition, we can show it is equivalent to the
original reduction rule for delimited continuations, where

we write h for the handler shift0(f)→ f(resume):
reset0(Xs[shift0(λk. e)])

.
=

handle{h}(Xs[shift0(λk. e)])
−→

(f(resume))[f 7→λk. e, resume 7→λx. handle{h}(Xs[x])]
−→

(λk. e)(λx. handle{h}(Xs[x]))
−→

e[k 7→λx. handle{h}(Xs[x])].
=

e[k 7→λx. reset0(Xs[x])]
Even though we can define this equivalence in our untyped
calculus, we cannot give a general type to the shift0 opera-
tion in our system. To generally type shift and reset oper-
ations a more expressive type system with answer types is
required [1, 6]. Kammar et al. [18] also show that it is possi-
ble to go the other direction and implement handlers using
delimited continuations but that solution requires mutable
reference cells to implement a global handler stack.

4.3. Soundness: well typed effect handlers cannot
go wrong
Under our semantics, well-typed programs cannot go wrong:
Theorem 1. (Semantic soundness)
If · ⊢ e : τ | ϵ then either e ⇑ or e 7−→→ v where · ⊢ v : τ | e.
where we use the notation e ⇑ for a never-ending reduction.
The proof of this theorem consists of showing two main
lemmas:
• Show that reduction in the operational semantics pre-

serves well-typing, i.e. subject reduction, and,
• Show that faulty expressions are not typeable.

If programs are closed and well-typed we know from subject
reduction that we can only reduce to well-typed terms, which
are either faulty, a value, or an expression containing a
further redex. Since faulty expressions are not typeable, it
must be that evaluation either produces a well-type value
or diverges. (Often a soundness proof is done using progress
instead of faulty expressions but we use the latter technique
since it turns out that for proving state isolation [23] this
technique works better).

9

Subject reduction is stated more precisely as:
Lemma 1. (Subject reduction)
If Γ ⊢ e1 : τ | ϵ and e1 7−→ e2 then Γ ⊢ e2 : τ | ϵ.
To show that subject reduction holds we need to establish
various other lemmas. Two particularly important ones are
the substitution and replacement lemmas:
Lemma 2. (Substitution)
If Γ, x : ∀α. τ ⊢ e : τ ′ | ϵ where x ̸∈ dom(Γ), Γ ⊢ v : τ | ϵ,
and α ̸ ∩ ftv(Γ), then Γ ⊢ e[x 7→ v] : τ ′ | ϵ.

Lemma 3. (Replacement)
If D is a deduction ending in Γ ⊢ E[e] : τ | ϵ, and D′ is
a sub-deduction of D ending in Γ′ ⊢ e : τ ′ | ϵ′ and occurs
at the hole of E, and Γ ⊢ e′ : τ ′ | ϵ′, then we have that
Γ ⊢ E[e′] : τ | ϵ.
The proofs of these lemmas carry over directly from [48].
Using these lemmas we can prove subject reduction. We
focus on the interesting cases for (let), (return) and (handle):
Proof. (Subject reduction)
We prove by induction over the reduction rules of −→.
case val x = v; e−→ e[x 7→ v]: From let we have Γ ⊢ v : σ | ϵ,
and Γ, x : σ ⊢ e : τ | ϵ, and by Lemma 2, we can derive that
Γ ⊢ e[x 7→ v] : τ | ϵ.
case handle{h}(v)−→ e[x 7→ v] with return x→ e ∈ h (0):
From handle we have Γ ⊢ v : τ | _ (1), and Γ, x : τ ⊢ e : τr | ϵ.
Using (1) and lemma 2 we can derive Γ ⊢ e[x 7→ v] : τr | ϵ.
case handle{h}(Xop[op(v)])−→ e[x 7→ v, resume 7→λy. handle
{h}(Xop[y])] with op(x)→ ϵ ∈ h (0): Assume op ∈ Σ(l) (1).
From handle we have Γ ⊢ Xop[op(v)] : τ | ⟨l|ϵ⟩. By (1) we
can derive G0 ⊢ op : τ1 →⟨l⟩ τ2 | ⟨⟩, and thus from app and
op(v), we derive Γ ⊢ v : τ1 | _ (2), and Γ ⊢ op(v) : τ2 | _ (3).
Using (3) and lemma 3, and assuming · ⊢ y : τ2 | _, it
follows Γ ⊢ Xop[y] : τ | ⟨l|ϵ⟩. Using handle and (1), we
also have Γ ⊢ handle{h}(Xop[y]) : τr | ϵ, and through lam,
Γ ⊢ λy. handle{h}(Xop[y]) : τ2 → ϵ τr | _ (4). Again from
handle and (0) we have Γ, resume : τ2 → ϵ τr, x : τ1 ⊢
e : τr | ϵ, and using lemma 1 in combination with (2) and (4)
we conclude Γ ⊢ e[x 7→ v, resume 7→λy. handle{h}(Xop[y])] □

4.4. Faulty expressions
The main purpose of type checking is of course to guarantee
that wrong expressions cannot occur. Apart from the usual
errors, like adding a number to a string, we have one more
kind of error in our system that we like to avoid, namely
using operations without an corresponding handler to give
semantics:
Lemma 4. (Faulty expressions are not typeable)
a. If Γ ⊢ c(v) : τ | ϵ then δ(c, v) is defined.
b. If Γ ⊢ Xop[op(v)] : τ | ϵ, with op ∈ Σ(l), then l ∈ ϵ.
The second statement is somewhat unusual since it concerns
itself with effects only. It is a powerful lemma though as it
states that effect types cannot be discarded (except through
handlers). This lemma also implies effect types are meaning-
ful, e.g. if a function does not have an exc effect, it will never
throw an exception.
Proof. (Lemma 4.b)
Suppose Γ ⊢ Xop[op(v)] : τ | ϵ with op ∈ Σ(l) (1). To be well
typed, we must have Γ ⊢ op(v) : _ | ϵ′ with l ∈ ϵ′ (due to
(1)). We use induction on the structure of Xop to show that
l ∈ ϵ′ for any Γ ⊢ Xop[op(v)] : _ | ϵ′.
case Xop(e′): Due to the induction hypothesis, the premise
in rule app is typed with an effect ϵ′ with l ∈ ϵ′ and therefore

e ::= xσ | cσ | e(e)
| λϵx : σ. e
| val x = e; e binding
| e⟨σ⟩ | Λα. e type application/abstraction
| e⟨⟨ϵ⟩⟩ opening an effect
| handle⟨l⟩{h}(e)

Figure 5. Syntax of explicitly typed Koka

also in the result effect l ∈ ϵ′.
case v(Xop): as the previous case.
case val x = Xop; e: Similarly to the previous cases, the
premise is typed with an effect ϵ′ with l ∈ ϵ′ and therefore
due to rule let the result effect also has l ∈ ϵ′

case handle{h}(Xop) with op ̸∈ h: since op ̸∈ h the handler
discharges some effect l′ with l ̸= l′. Using rule handle and
app we have a premise Γ ⊢ Xop : _ | ⟨l′, l|_⟩ and a result
effect ⟨l|_⟩ and thus l ∈ ϵ′ □

5. Compilation
Compiling algebraic effects efficiently is not straightforward.
In particular, as can be seen in the operational semantics of
Figure 4, the rule for handlers captures a delimited execution
context Xop[op(v)] which in practice means we need to
capture the call stack up to the handler.

If we have full control over the runtime system, this can
be done in a straightforward manner similarly how many
compilers for Scheme and ML implement callcc. This ap-
proach does not work though when targeting a common
runtime platform, like the JVM or the .NET environment.
For Koka in particular, we compile to JavaScript to take ad-
vantage of the rich libraries and runtime environments (like
high performance asynchronous web services in NodeJS).

In these environments we cannot capture the call stack
and need to use other mechanisms to implement the effect
handlers. One way to avoid capturing the stack, is to trans-
late the program into continuation passing style (CPS) [10].
This makes the evaluation context explicit in the current
continuation. For example, Scheme implementations usually
use this in order to implement both proper tail-calls, as well
as callcc, when targeting JavaScript [29, 46, 50]. This was
also used in Scala to provide first-class delimited continua-
tions on the JVM platform [38].

With a CPS translation, the evaluation context Xop es-
sentially disappears since all constructs take an explicit con-
tinuation function k as a last argument. For example, the xor
function from the Section 2.4 would get CPS translated into:
val xor = λk. flip(λp. flip(λq. k((p||q)&& !(p&&q))))
We can see that an operation call op(v) becomes op(v, k)
where k is a function taking the result of the operation call.
The reduction rule for handlers essentially becomes:
handle{h}(Hop[op(v, k)])
−→ { op(x)→ e ∈ h }

e[x 7→ v, resume 7→λy. handle{h}(Hop[k(y)])]
where the context Hop is now strictly a stack of handlers.
In an implementation it is straightforward to maintain such
’shadow’ stack explicitly.

At first, we tried a full CPS translation in Koka but it
turned out to slow down the code significantly. One of the
larger programs written in Koka is a markdown processor
called Madoko [24]. This program runs usually client-side in
the browser and with a full CPS translation it started to use

10

⊢ cσ : σ | ϵ [Con]

⊢ xσ : σ | ϵ [Var]

⊢ e : σ | ϵ
⊢ Λα. e : ∀α. σ | ϵ [TLam]

⊢ e : σ | ϵ
⊢ λϵx : σ1. e : σ1 → ϵ σ | ϵ′

[Lam]

⊢ e : ∀α. σ | ϵ
⊢ e⟨σ1⟩ : σ[α 7→σ1] | ϵ

[TApp]

⊢ e1 : σ2 → ϵ σ | ϵ ⊢ e2 : σ2 | ϵ
⊢ e1(e2) : σ | ϵ [App]

⊢ e : σ1 →⟨l1, ..., ln⟩σ2 | ϵ′

⊢ e⟨⟨ϵ⟩⟩ : σ1 →⟨l1, ..., ln|ϵ⟩σ2 | ϵ′
[Open]

Σ(l) = {op1, ..., opn} ⊢ opi : σi →⟨l⟩σ′
i | ⟨⟩

⊢ e : σr | ⟨l|ϵ⟩ ⊢ ei : σ | ϵ ⊢ er : σ | ϵ [handle]
⊢ handle⟨l⟩{ op1(x : σ1)→ e1; ...; opn(x : σn)→ en; return x : σr → er }(e) : σ | ϵ

Figure 6. Type rules for explicitly typed Koka

too much resources to run reliably. A better approach was
needed.

5.1. A type-directed selective CPS translation.
It has long been recognized that one can selectively CPS
transform only parts of the program that need it [8, 9, 37]. In
our case, we only have to use CPS translation on those parts
that may issue effectful operations. Moreover, since effects
are tracked in the type system, we can use a type-directed
selective CPS translation (as used by Scala [38] for example).
We built on the translation by Nielsen [31] who introduces
a sound selective CPS translation for the simply typed
lambda calculus extended with callcc and throw. However,
the translation by Nielsen applies to monomorphic effects
only and we will see that in the presence of polymorphic
effect variables the translation becomes more complex.

We define the CPS translation over an explicitly typed
core calculus, defined in Figure 5. This is the internal core
calculus of Koka generated by type inference. It is essentially
System F [15] extended with the effect annotations. In par-
ticular, lambda’s carry the effect of the body as ϵ. Similarly,
handlers are annotated with the handled effect type l. Fi-
nally, there is a special construct e⟨⟨ϵ⟩⟩ that opens the effect
of e with effect ϵ – this is generated whenever the open rule
is applied as discussed in Section 3.2 on simplifying types.

The type checking rules for the explicitly typed core
calculus are given in Figure 6. A rule ⊢ e : σ | ϵ states that
a given expression e has type σ under a given ϵ, where the
effect ϵ is inherited and not synthesized. We can see this in
rule lam where the annotated effect determines the effect of
the body.

5.1.1. Selective translation
For a selective translation we need a function H (for handled
effects) that determines based on the type if a CPS trans-
lation is needed. The handler function has the form H(θ, ϵ)
where θ is a set of ‘unhandled’ effect variables (µ):
H(θ, ⟨l|ϵ⟩)= H(l) ∨H(θ, ϵ)
H(θ, ⟨⟩) = false
H(θ, µ) = µ ̸∈ θ

We also overload H(l) to determine if a particular effect
l may need CPS translation. For now, we assume H(l) is
always true. In the Koka implementation though, we dis-
tinguish built-in effects from user defined effects through
the kind system. The built-in effects consist of exceptions
(exn), non-termination (div), non-determinism (ndet), poly-
morphic state (st⟨h⟩), and general I/O operations (io). All
of these are usually provided directly by the target system
(like JavaScript) and can thus be directly compiled without
needing CPS translation. This turns out to be a very impor-

tant optimization as many (leaf) functions do not use any
user defined effects and can thus be compiled directly – and
implies there is no cost for effect handlers for any code that
does not use them.

For any function f with a function type with effect ϵ
where H(θ, ϵ) is true, f is translated in CPS style and will
have an extra continuation parameter k at runtime. When
H(θ, ϵ) is false, the function is compiled as usual without a
continuation parameter.

The last case of H for a polymorphic effect variable µ is
only false if µ is an element of the set θ. In general we always
need to assume a CPS translation is needed for any µ as such
variable may get instantiated later on with a user-defined
effect. However, as we will see, for polymorphic functions
we need to generate two translations and the θ set is used
to force certain effect variables to be treated as needing no
CPS translation.

In the case of polymorphic functions, the simplified types
of Section 3.2 turn out to have a performance impact as
well: many functions that would otherwise get a type with
an open polymorphic effect, are now closed and thus do not
need a CPS translation as H will be false. In the Koka core
library, this reduced the set of CPS translated functions by
over 80%.

5.1.2. Translation rules
Using the H function, Figure 7 defines a type directed se-
lective CPS translation for our explicitly typed core calcu-
lus. Each rule of the form θ ⊢ e ⇝ e states that expression
e gets translated into a static expression e assuming a set
of unhandled effect variables θ (initially empty). Following
Nielsen [31], we write the translation itself in a continuation
passing style; to distinguish the translation lambda’s and
applications from the ones in the program we write static
applications as e[e] and static lambda’s as λλ.In a rule e ⇝ e
the e expression is a function that takes itself a continuation
function k, which takes expressions to cps expressions.

The rules translate explicitly typed core into a untyped
lambda calculus. We would have liked the target calculus to
be explicitly typed as well, but as we will see, that would
require further type rules to deal with variadic functions.
In the actual Koka implementation we do translate to an
explicitly typed core though.

Most rules are standard, except for the open and lam
rules. Rules con and var pass the value on to the continua-
tion. The tapp and tlam rules just pass on the translation of
their bodies. In the val rule we can see why a continuation
based translation works well, as we can pass the binding
of x as a static continuation itself. The app rule is special-
ized depending on whether effect is CPS translated or not.
The handle rule is straightforward but and translates all

11

Static expression e ::= e (expression)
| λλx.e (abstraction)
| e[e] (application)

θ ⊢ cσ ⇝ λλk.k[c] [con]

θ ⊢ xσ ⇝ λλk.k[x] [var]

θ ⊢ e ⇝ e
θ ⊢ e⟨τ⟩ ⇝ e [tapp]

e ⇝ e
θ ⊢ Λα. e ⇝ e [tlam]

θ ⊢ e ⇝ e ⊢ e : τ1 → ϵ′ τ2
H(θ, ϵ′) ∨ ¬H(θ, ϵ)

θ ⊢ e⟨⟨ϵ⟩⟩ ⇝ e [open]

θ ⊢ e ⇝ e ⊢ e : τ1 → ϵ′ τ2
¬H(θ, ϵ′) ∧H(θ, ϵ)

θ ⊢ e⟨⟨ϵ⟩⟩ ⇝ λλk.k[λx k. e[λλf.k(f(x))K [open-cps]

θ ⊢ e1 ⇝ e1 θ ⊢ e2 ⇝ e2
θ ⊢ val x = e1; e2 ⇝ λλk.e1[λλx.val x = x; e2[k]]

[val]

θ ⊢ e ⇝ e θ ⊢ er ⇝ er θ ⊢ ei ⇝ ei

θ ⊢ handle⟨l⟩{ opi(x : σi)→ ei; return x : σr → er }(e) ⇝
λλk.handlel{ opi(x :)→ ei[k]; return x→ er[k] }(e[λλx.x])

[handle]

θ ⊢ e1 ⇝ e1 θ ⊢ e2 ⇝ e2 ⊢ e1 : τ1 → ϵ τ2 ¬H(θ, ϵ)

θ ⊢ e1(e2) ⇝ λλk.e1[λλf.e2[λλx.k[f(x)]]] [app]

θ ⊢ e1 ⇝ e1 θ ⊢ e2 ⇝ e2 ⊢ e1 : τ1 → ϵ τ2 H(θ, ϵ)

θ ⊢ e1(e2) ⇝ λλk.e1[λλf.e2[λλx.f(x, λy. k[y])]] [app-cps]

θ ⊢ e ⇝ e ¬H(θ, ϵ) ϵ ̸= ⟨l1, ..., ln |µ⟩
θ ⊢ λϵx : τ. e ⇝ λλk.k[λϵx. e[λλx.x]] [lam]

θ ⊢ e ⇝ e H(θ, ϵ) ϵ ̸= ⟨l1, ..., ln |µ⟩
θ ⊢ λϵx : τ. e ⇝ λλk.k[λx k. e[λλx.k(x)K [lam-cps]

ϵ = ⟨l1, ..., ln |µ⟩ θ/{µ} ⊢ e ⇝ ecps θ ∪ {µ} ⊢ e ⇝ eplain

θ ⊢ λϵx : τ. e ⇝ λλk.k[λx k. if k? then (ecps[λλx.k(x)]) else (eplain[λλx.x])] [lam-dup]

Figure 7. Type directed selective CPS translation.

its subexpressions. In practice we would need to provide a
shared binding for k though since the rule as state might
duplicate code. The result is an application handlel which is
a handler for effect l. On every target platform this must be
implemented as a primitive.

That leaves the open and lam rules which need more
explanation.
5.2. Opening: non-CPS to CPS
The open and open-cps rule open an effect type. However,
opening an effect type ⟨l1, ..., ln⟩ to ⟨l1, ..., ln|ϵ⟩ may change
the runtime representation: in particular, if l1 to ln are all
built-in effects, but ϵ is a handled effect, the function type
changes from being non-CPS to CPS translated! – the CPS
translated result should now take a continuation k as its last
argument. The rule open-cps defines this case and wraps
the non-CPS translated function in a lambda that takes a
continuation k and applies that k directly to the result of
applying the translated non-CPS function. This is effectively
the point where non-CPS functions are lifted into the CPS
world at runtime.

5.3. Closing: CPS to non-CPS
With the open rules, the runtime representation can be
changed directly with a small and constant cost. There is
one other place where the runtime representation can change
and that is due to type instantiation. Unfortunately, in this
case we cannot so easily change the term at runtime. In
particular, a function type may be hidden inside some other
type. For example, if we define a data type as:

type hide⟨e⟩ { Hide(f : int → e int) }

then we can have terms of form Hide(id) : ∀µ. hide⟨µ⟩.
When this is instantiated it is not clear how to convert
such term at runtime back to a non-CPS form. This is a

deep problem and in other work on monadic effects [47] led
to restrictions on the amount of polymorphism allowed in
the effect system to avoid this situation.

Here we take another approach: we are going to try to
not change the runtime representation of functions that
are CPS translated, even if they are called from a non-
CPS context and the continuation argument is lacking. We
assume that our target environment supports some form
of variadic functions and that we can check at runtime if
the k argument is present or not. This is well supported
in JavaScript but it works well in typed environments too.
For example, for the .NET target, first-class functions are
represented by function objects and we can modify to the
Apply methods to check if the k parameter was present.

5.3.1. Assume identity?
At first, we thought it is sufficient to default the continuation
parameter to the identity function and assume k = λx.x if
the argument was not present. That approach does not work
though in the presence of effect polymorphic higher-order
functions. Consider the map function:

fun map(xs : list⟨a⟩, f : a → e b) : e list⟨b⟩ {
match(xs) {

Nil → Nil
Cons(x,xx)→ Cons(f(x),map(xx,f))

}
}

12

which is effect polymorphic. A naïve CPS translation leads
to (assuming a match construct and tupling):
val mapcps = λ(xs, f, k).

match(xs) {
Nil→ k(Nil)
Cons(x, xx)→ f(x, λy.map(xx, f, λyy. k(Cons(y, yy))))

}
Note in particular that f itself is called as a CPS function
with a continuation argument. If we now have a call to
map where the effect type is immediately instantiated to
the empty effect, the continuation argument k will not be
present. For example, the explicitly typed expression,
map⟨⟨⟩, int, int⟩([1], inc)
where we assume inc : int→ int, would get translated to:
map([1], inc)
Even if map would detect that the k parameter is not present
and substitute k = λx.x, this would still go wrong at runtime
as inc is called inside map with a continuation argument!

5.3.2. Polymorphic duplication
The solution is to generate two translations of every function
polymorphic in some effect µ – one is the CPS translation
(e.g. mapcps), and one is a plain translation (e.g. mapplain).
We then use a wrapper that chooses either implementation
at runtime based on whether the continuation argument is
present. For example, the wrapper for map becomes:
val map = λ(xs, f, k). if k? then mapcps(xs, f, k) else mapplain(xs, f)
where we assume k? tests if k was present. The implementa-
tion of the question mark operator is dependent on the par-
ticular target environment. For example, in our JavaScript
backend we can simply use k !== undefined.

The duplicate translation rule is lam-dup – here we fi-
nally use the θ set to generate a CPS translated version
of the body (using θ/{µ}), and non-CPS version too (us-
ing θ ∪ {µ}). Finally we generate a wrapper to choose the
correct version at runtime. The other two rules, lam and
lam-cps are used for non effect polymorphic functions.

There is a performance advantage too to this translation
– similarly to the worker-wrapper transformation [32] a
target platform can usually inline most call sites. Since
many of these effect polymorphic functions abstract over
iteration patterns (like map) this gives the target platform
more opportunities to optimize loops since the plain versions
will be more amenable to common loop optimizations.

Since only the tail of an effect row can be polymorphic,
there is no risk of exponential code duplication. Even for
the Koka core library which contains many of these higher-
order effect polymorphic functions, the code size increased
by a modest 20%.

5.4. The runtime system
The runtime system needs to implement the handlel primi-
tive. In general, the handlel function registers the operation
and return clauses and pushes a handler frame for effect l
on the handler stack. When an operation is performed, it
searches along the handler stack for a handler frame and
calls into the appropriate operation clause with the current
continuation as an argument.

In our JavaScript implementation we have refined this
where we have a generic handler that implements a trampo-
line: operations just return to this handler loop where they

are handled and resumed. This way we ensure the stack
always gets unrolled for code that uses operations – this is
essentially implements proper tail calls (except that the pro-
grammer needs to call an operation every once in a while).

6. Related work
Algebraic effects were first described by Plotkin and Power [34]
as an algebraic model of computational effects. Later Plotkin
and Pretnar [33] added algebraic effect handlers to describe
exceptions. Various implementations of algebraic effects ex-
ists. Kammar et al. [18] show an efficient implementation
as a library in Template Haskell where they use a con-
tinuation monad to implement handlers. Using first-class
patterns, Wu et al. [49] also embed algebraic effects as a
library in Haskell. Brady [5] implements algebraic effects as
a DSL library in the dependently typed Idris language.

The language Eff [3] is an ML-like language designed
around algebraic effect handlers. It also provides support
for dynamic effect resources which can be used to model
polymorphic mutable references. There are designs for an
effect type system with type inference for Eff [2, 35] based
sub-typing and a region system.

The Links language [27] has recently been extended with
support for algebraic effect handlers. Just like we reused the
original effect system of Koka, Hillerström and Lindley [16]
describe how the original Links type system can be naturally
extended to handle algebraic effects too. Their system is
also based on row-polymorphism but they use instead Remy
style rows [36] where the kind system is extended to record
presence or absence of effects in the row. We believe our
approach based on scoped labels [22] is simpler in practice,
but the Remy style can be more expressive as it can describe
the absence of effects.

Frank [28] is an experimental language based solely on
effect handlers where there is no primitive notion of a func-
tion: its handlers all the way down. Just like scoped labels,
effects may occur multiple times in a row.

In contrast to our work, all of the previous implementa-
tions have full control over the runtime stack being imple-
mented as an interpreter, a library, or by using specialized
runtimes like OCaml. Also, many other type systems use
structural types for the effects where each effect operation
(and its type) occurs in the inferred types. In this paper we
use a nominal system where a single effect type implies the
available operations. We believe this is better in practice to
keep inferred types small and understandable. For example,
compare the type of the state handler in Section 2.2 with
the type inferred in Links [16] (where _ denotes absence):

sig state : (s) -> (Comp({Get:s,Put:(s) {}-> ()|e},a))
-> Comp({Get{_},Put{_}|e},a)

where the operations of the state effect are explicit in the
type. A drawback of our approach is that an effect handler
must handle all operations of a particular effect type, and
cannot pick and choose arbitrarily.

There are also approaches to handling effects using mon-
ads [41, 47]. A significant drawback of these approaches is
that monads do not naturally compose and combining dif-
ferent effects is difficult in these systems. An exception is
Filinski’s work on layered monads which do support a simi-
lar style of composing effects [12, 13].

13

7. Conclusion
Algebraic effect handlers concisely describe many complex
control-flow constructs in various programming languages.
We hope that the language design, the direct operational
semantics, and compilation scheme described in this article
will contribute to wider adoption of algebraic effects. In the
future we plan use algebraic effects to implement strongly
typed asynchronous web services in NodeJS.

References
[1] Kenichi Asai, and Yukiyoshi Kameyama. “Polymorphic

Delimited Continuations.” In APLAS’07, 239–254. 2007.
doi:10.1007/978-3-540-76637-7_16.

[2] Andrej Bauer, and Matija Pretnar. “An Effect System for Al-
gebraic Effects and Handlers.” Logical Methods in Computer
Science 10 (4). 2014.

[3] Andrej Bauer, and Matija Pretnar. “Programming with Alge-
braic Effects and Handlers.” J. Log. Algebr. Meth. Program.
84 (1): 108–123. 2015. doi:10.1016/j.jlamp.2014.02.001.

[4] Gavin Bierman, Claudio Russo, Geoffrey Mainland, Erik
Meijer, and Mads Torgersen. “Pause ‘n’ Play: Formal-
izing Asynchronous C#.” In ECOOP 2012 – Object-
Oriented Programming: 26th European Conference, Bei-
jing, China, edited by James Noble, 233–257. Springer. 2012.
doi:10.1007/978-3-642-31057-7_12.

[5] Edwin Brady. “Programming and Reasoning with Algebraic
Effects and Dependent Types.” In Proc. of ICFP’13, 133–144.
2013. doi:10.1145/2500365.2500581.

[6] Olivier Danvy, and Andrzej Filinski. A Functional Abstrac-
tion of Typed Contexts. 1989.

[7] Olivier Danvy, and Andrzej Filinski. “Abstracting Control.”
In Proceedings of the 1990 ACM Conference on LISP and
Functional Programming, 151–160. LFP ’90. Nice, France.
1990. doi:10.1145/91556.91622.

[8] Olivier Danvy, and John Hatcliff. “CPS-Transformation Af-
ter Strictness Analysis.” ACM Lett. Program. Lang. Syst. 1
(3). ACM: 195–212. Sep. 1992. doi:10.1145/151640.151641.

[9] Olivier Danvy, Jung-taek Kim, and Kwangkeun Yi. “Assess-
ing the Overhead of ML Exceptions by Selective CPS Trans-
form.” In In Proceedings of the 1998 ACM SIGPLAN Work-
shop on ML, 103–114. 1998.

[10] Olivier Danvy, Kevin Millikin, and Lasse R. Nielsen. “On
One-Pass CPS Transformations.” J. Funct. Program. 17 (6):
793–812. Nov. 2007. doi:10.1017/S0956796807006387.

[11] S Dolan, L White, Sivaramakrishnan K, Yallop J, and A
Madhavapeddy. “Effective Concurrency through Algebraic
Effects.” In OCaml Workshop. Sep. 2015.

[12] Andrzej Filinski. “Representing Layered Monads.” In Pro-
ceedings of the 26th ACM Symposium on Principles of Pro-
gramming Languages, 175–188. ACM Press. 1999.

[13] Andrzej Filinski. “Monads in Action.” In Proceedings of
the 37th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 483–494. 2010.
doi:10.1145/1706299.1706354.

[14] Ben R. Gaster, and Mark P. Jones. A Polymorphic Type
System for Extensible Records and Variants. NOTTCS-TR-
96-3. University of Nottingham. 1996.

[15] Jean-Yves Girard. “The System F of Variable Types, Fifteen
Years Later.” TCS. 1986.

[16] Daniel Hillerström, and Sam Lindley. “Liberating Effects
with Rows and Handlers.” Mar. 2016. Draft.

[17] Graham Hutton, and Erik Meijer. Monadic Parser Combina-
tors. NOTTCS-TR-96-4. Dept. of Computer Science, Univer-
sity of Nottingham. 1996. http://www.cs.nott.ac.uk/Dept.
{}/Staff/gmh/monparsing.ps.

[18] Ohad Kammar, Sam Lindley, and Nicolas Oury. “Han-
dlers in Action.” In Proceedings of the 18th ACM SIG-
PLAN International Conference on Functional Program-
ming, 145–158. ICFP ’13. ACM, New York, NY, USA. 2013.
doi:10.1145/2500365.2500590.

[19] Oleg Kiselyov, Amr Sabry, and Cameron Swords. “Extensible
Effects: An Alternative to Monad Transformers.” In Proceed-
ings of the 2013 ACM SIGPLAN Symposium on Haskell,
59–70. Haskell ’13. Boston, Massachusetts, USA. 2013.
doi:10.1145/2503778.2503791.

[20] Peter J. Landin. A Generalization of Jumps and Labels.
UNIVAC systems programming research. 1965.

[21] Peter J. Landin. “A Generalization of Jumps and Labels.”
Higher-Order and Symbolic Computation 11 (2): 125–143.
1998. doi:10.1023/A:1010068630801. reprint from [20].

[22] Daan Leijen. “Extensible Records with Scoped Labels.” In In:
Proceedings of the 2005 Symposium on Trends in Functional
Programming, 297–312. 2005.

[23] Daan Leijen. “Koka: Programming with Row Polymor-
phic Effect Types.” In MSFP’14, 5th Workshop on
Mathematically Structured Functional Programming. 2014.
doi:10.4204/EPTCS.153.8.

[24] Daan Leijen. “Madoko: Scholarly Documents for the Web.”
In Proceedings of the 2015 ACM Symposium on Document
Engineering, 129–132. DocEng ’15. ACM, Lausanne, Switzer-
land. 2015. doi:10.1145/2682571.2797097.

[25] Daan Leijen. “Koka Overview and Reference.” 2016. http://
research.microsoft.com/en-us/um/people/daan/koka/
doc/kokaspec.html.

[26] Daan Leijen, and Erik Meijer. Parsec: Direct Style Monadic
Parser Combinators for the Real World. UU-CS-2001-27.
Dept. of Computer Science, Universiteit Utrecht. 2001.
http://www.cs.uu.nl/people/daan/pubs.html.

[27] Sam Lindley, and James Cheney. “Row-Based Effect Types
for Database Integration.” In TLDI’12, 91–102. 2012.
doi:10.1145/2103786.2103798.

[28] Sam Lindley, Connor McBride, and Craig McLaughlin.
“Do Be Do Be Do.” 2016. http://homepages.inf.ed.ac.uk/
slindley/papers/frankly-draft-july2016.pdf.

[29] Florian Loitsch, Manuel Serrano, and Inria Sophia Antipolis.
“Hop Client-Side Compilation.” In Proceedings of the 8th
Symposium on Trends on Functional Languages. 2007.

[30] Eugenio Moggi. “Notions of Computation and Mon-
ads.” Information and Computation 93 (1): 55–92. 1991.
doi:10.1016/0890-5401(91)90052-4.

[31] Lasse R. Nielsen. “A Selective CPS Transformation.” Elec-
tronic Notes in Theoretical Comp. Sc. 45: 311–331. 2001.
doi:10.1016/S1571-0661(04)80969-1. MFPS 2001, 17th Conf.
on the Mathematical Foundations of Prog. Semantics.

[32] Simon L. Peyton Jones, and André L. M. Santos.
“A Transformation-Based Optimiser for Haskell.” Sci-
ence of Computer Programming 32 (1): 3–47. 1998.
doi:10.1016/S0167-6423(97)00029-4.

[33] Gordon D. Plotkin, and Matija Pretnar. “Handling Algebraic
Effects.” In Logical Methods in Computer Science, volume 9.
4. 2013. doi:10.2168/LMCS-9(4:23)2013.

[34] Gordon Plotkin, and John Power. “Algebraic Operations and
Generic Effects.” Applied Categorical Structures 11 (1): 69–
94. 2003. doi:10.1023/A:1023064908962.

[35] Matija Pretnar. “Inferring Algebraic Effects.” Logical Meth-
ods in Computer Science 10 (3). 2014. doi:10.2168/LMCS-
10(3:21)2014.

[36] Didier Rémy. “Type Inference for Records in Natural Ex-
tension of ML.” In Theoretical Aspects of Object-Oriented
Programming, 67–95. 1994.

14

https://dx.doi.org/10.1007/978-3-540-76637-7_16
https://dx.doi.org/10.1016/j.jlamp.2014.02.001
https://dx.doi.org/10.1007/978-3-642-31057-7_12
https://dx.doi.org/10.1145/2500365.2500581
https://dx.doi.org/10.1145/91556.91622
https://dx.doi.org/10.1145/151640.151641
https://dx.doi.org/10.1017/S0956796807006387
https://dx.doi.org/10.1145/1706299.1706354
http://www.cs.nott.ac.uk/Dept.%7B%7D/Staff/gmh/monparsing.ps
http://www.cs.nott.ac.uk/Dept.%7B%7D/Staff/gmh/monparsing.ps
https://dx.doi.org/10.1145/2500365.2500590
https://dx.doi.org/10.1145/2503778.2503791
https://dx.doi.org/10.1023/A:1010068630801
https://dx.doi.org/10.4204/EPTCS.153.8
https://dx.doi.org/10.1145/2682571.2797097
http://research.microsoft.com/en-us/um/people/daan/koka/doc/kokaspec.html
http://research.microsoft.com/en-us/um/people/daan/koka/doc/kokaspec.html
http://research.microsoft.com/en-us/um/people/daan/koka/doc/kokaspec.html
http://www.cs.uu.nl/people/daan/pubs.html
https://dx.doi.org/10.1145/2103786.2103798
http://homepages.inf.ed.ac.uk/slindley/papers/frankly-draft-july2016.pdf
http://homepages.inf.ed.ac.uk/slindley/papers/frankly-draft-july2016.pdf
https://dx.doi.org/10.1016/0890-5401%252891%252990052-4
https://dx.doi.org/10.1016/S1571-0661%252804%252980969-1
https://dx.doi.org/10.1016/S0167-6423%252897%252900029-4
https://dx.doi.org/10.2168/LMCS-9%25284:23%25292013
https://dx.doi.org/10.1023/A:1023064908962
https://dx.doi.org/10.2168/LMCS-10%25283:21%25292014
https://dx.doi.org/10.2168/LMCS-10%25283:21%25292014

[37] John Reppy. “Optimizing Nested Loops Using Local CPS
Conversion.” Higher-Order and Symbolic Computation 15
(2): 161–180. 2002. doi:10.1023/A:1020839128338.

[38] Tiark Rompf, Ingo Maier, and Martin Odersky. “Implement-
ing First-Class Polymorphic Delimited Continuations by a
Type-Directed Selective CPS-Transform.” In . ICFP. 2009.

[39] Chung-chieh Shan. “A Static Simulation of Dynamic Delim-
ited Control.” Higher-Order and Symbolic Computation 20
(4): 371–401. 2007. doi:10.1007/s10990-007-9010-4.

[40] Martin Sulzmann. Designing Record Systems.
YALEU/DCS/RR-1128. Yale University. Apr. 1997.

[41] Nikhil Swamy, Nataliya Guts, Daan Leijen, and Michael
Hicks. “Lightweight Monadic Programming in ML.” In ICFP.
2011. doi:10.1145/2034773.2034778.

[42] Wouter Swierstra. “Data Types à La Carte.” Journal
of Functional Programming 18 (4): 423–436. Jul. 2008.
doi:10.1017/S0956796808006758.

[43] The EcmaScript committee. “ES6: The EcmaScript
2015 Language Specification.” 2015. http://www.ecma-
international.org/ecma-262/6.0/ECMA-262.pdf.

[44] The EcmaScript committee. “ES7: The Draft EcmaScript
2017 Language Specification.” 2016. https://tc39.github.
io/ecma262.

[45] Hayo Thielecke. “Using a Continuation Twice and Its
Implications for the Expressive Power of Call/Cc.”
Higher Order Symbol. Comput. 12 (1). Kluwer Aca-
demic Publishers, Hingham, MA, USA: 47–73. Apr. 1999.
doi:10.1023/A:1010068800499.

[46] Eric Thivierge, and Marc Feeley. “Efficient Compilation of
Tail Calls and Continuations to JavaScript.” In Proc. of the
2012 Annual Workshop on Scheme and Funct. Prog., 47–57.
2012. doi:10.1145/2661103.2661108.

[47] Niki Vazou, and Daan Leijen. “From Monads to Effects
and Back.” In 18th Int. Symp. on the Practical Aspects
of Declarative Languages, 169–186. 2016. doi:10.1007/978-
3-319-28228-2_11.

[48] Andrew K. Wright, and Matthias Felleisen. “A Syntactic
Approach to Type Soundness.” Inf. Comput. 115 (1): 38–94.
Nov. 1994. doi:10.1006/inco.1994.1093.

[49] Nicolas Wu, Tom Schrijvers, and Ralf Hinze. “Effect Han-
dlers in Scope.” In Proceedings of the 2014 ACM SIGPLAN
Symposium on Haskell, 1–12. Haskell ’14. ACM, New York,
NY, USA. 2014. doi:10.1145/2633357.2633358.

[50] Danny Yoo, and Shriram Krishnamurthi. “Whalesong: Run-
ning Racket in the Browser.” In Proceedings of the 9th Sym-
posium on Dynamic Languages, 97–108. DLS ’13. ACM, Indi-
anapolis, Indiana, USA. 2013. doi:10.1145/2508168.2508172.

Created with Madoko.net.

15

https://dx.doi.org/10.1023/A:1020839128338
https://dx.doi.org/10.1007/s10990-007-9010-4
https://dx.doi.org/10.1145/2034773.2034778
https://dx.doi.org/10.1017/S0956796808006758
http://www.ecma-international.org/ecma-262/6.0/ECMA-262.pdf
http://www.ecma-international.org/ecma-262/6.0/ECMA-262.pdf
https://tc39.github.io/ecma262
https://tc39.github.io/ecma262
https://dx.doi.org/10.1023/A:1010068800499
https://dx.doi.org/10.1145/2661103.2661108
https://dx.doi.org/10.1007/978-3-319-28228-2_11
https://dx.doi.org/10.1007/978-3-319-28228-2_11
https://dx.doi.org/10.1006/inco.1994.1093
https://dx.doi.org/10.1145/2633357.2633358
https://dx.doi.org/10.1145/2508168.2508172
https://www.madoko.net

	1. Introduction
	2. Overview
	2.1. Exceptions as algebraic effects
	2.2. State: resuming operations
	2.3. Iterators
	2.4. Ambiguity: multiple resumptions
	2.5. Asynchronous programming
	2.6. Domain specific effects: parsing

	3. Type rules
	3.1. Type inference
	3.2. Simplifying types
	3.3. Type inference

	4. Operational semantics
	4.1. Optimizing tail-resumptions
	4.2. Comparison with delimited continuations
	4.3. Soundness: well typed effect handlers cannot go wrong
	4.4. Faulty expressions

	5. Compilation
	5.1. A type-directed selective CPS translation.
	5.1.1. Selective translation
	5.1.2. Translation rules

	5.2. Opening: non-CPS to CPS
	5.3. Closing: CPS to non-CPS
	5.3.1. Assume identity?
	5.3.2. Polymorphic duplication

	5.4. The runtime system

	6. Related work
	7. Conclusion

