
 Quickly Generating Billion-Record Synthetic Databases

Quickly Generating Billion-Record Synthetic Databases

Jim Gray, Prakash Sundaresan
Digital San Francisco Systems Center, 455 Market, San Francisco, CA., 94105

{Gray, Prakash}@SFbay.enet.dec.com
Susanne Englert

Tandem Computers Inc., 19333 Vallco Parkway, Cupertino, CA, 95014
Englert_Susanne @ Tandem.com.

Ken Baclawski
Computer Science, Northeastern University, 360 Huntington Av. Boston, MA. 02115

kenb@ccs.neu.edu
Peter J. Weinberger

Bell Laboratories, 600 Mountain Ave, Murry Hill, NJ., 07974
pjw @ research.att.com

Abstract: Evaluating database system performance often requires generating synthetic databases – ones having

certain statistical properties but filled with dummy information. When evaluating different database designs, it is

often necessary to generate several databases and evaluate each design. As database sizes grow to terabytes,

generation often takes longer than evaluation. This paper presents several database generation techniques. In

particular it discusses:

 (1) Parallelism to get generation speedup and scaleup.

 (2) Congruential generators to get dense unique uniform distributions.

 (3) Special-case discrete logarithms to generate indices concurrent to the base table generation.

 (4) Modification of (2) to get exponential, normal, and self-similar distributions.

The discussion is in terms of generating billion-record SQL databases using C programs running on a shared-nothing

computer system consisting of a hundred processors, with a thousand discs. The ideas apply to smaller databases,

but large databases present the more difficult problems.

Table of Contents

1. Introduction 1
2. The Computational Model 1
3. Sequential Database Generation 4
4. Parallel Database Generation 5
5. Dense Unique Random Data Generation 8
6. Generating Random Data 11
7. Generating Indices on Random Data 12
8. Generating Data Having Non Uniform Distributions 14
9. Summary 19
10. Acknowledgments 23
11. References 24

ACM COPYRIGHT NOTICE. Copyright © 2000 by the Association for Computing Machinery, Inc. Permission to make digital
or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. SIGMOD Record, vol.23,
no.2, pp.243-52. For definitive copy see: http://www.acm.org/pubs/citations/proceedings/mod/191839/p243-gray/. This copy
is posted by permission of ACM and may not be redistributed.

 Quickly Generating Billion-Record Synthetic Databases

 1

1. Introduction
Evaluating database system performance often requires generating large synthetic databases – ones
with certain statistical properties, but otherwise filled with dummy information. When evaluating
different database designs, it may be necessary to generate several databases and evaluate each design.
As database sizes grow to terabytes, generation often takes longer than evaluation.

Large database load or generation operations last for more than a week. The goal here is to quickly
generate a large database by using parallel algorithms and execution. To make the problem concrete,
the goal is to generate a billion record ACCOUNTS table for the TPC-A benchmark [TPC]. Generating
and loading this table using sequential algorithms would take several days. The goal here is to invent
algorithms and techniques that generate this billion-record table and its indices in an hour.

In outline, the paper first postulates a model of parallel computer hardware and software, so that we can
quantify the performance of each algorithm. Then, the paper shows how to convert a sequential load to
a parallel load by partitioning the job and forking a process-per-partition. Next the tasks of synthetic
data generation are investigated. Parallel algorithms are given for generating dense-unique-pseudo-
random sequences, and for generating indices on these sequences. After that, the paper investigates
generating non-dense non-uniform distributions with special attention paid to Zipfian and self-similar
distributions.

First consider parallel computer architecture and the associated performance and cost model .

 Quickly Generating Billion-Record Synthetic Databases

 2

2. The Computation Model
We assume a shared-nothing computer architecture typified by the Tandem, Teradata, or Gamma
machines, by workstation clusters from DEC, IBM, HP, Novell, and Sun, and by processor arrays like
the Intel Hypercube [Stonebraker, Horst, Teradata, DeWitt 1, DeWitt 3]. In these systems, each
processor has a private memory and one or more discs. The processors are connected via a high-
speed network and processes communicate via messages. Parallelism and minimal process interaction
are major design goals in these systems. Shared-disc systems like IBM's Sysplex and Digital's
VMSclusters are gravitating toward this shared-nothing architecture as the number of processors grows.

The ideas presented here apply to a spectrum of execution environments – a many-small environment
of hundreds of processors typified by Teradata and Gamma, and a few-big environment of tens of
processors typified by Tandem and VMScluster. In Table 1, the two systems each have 3 BIPS (billion
instructions per second1) of processing power, 10 GB of RAM, and 1 TB of disc storage (1000 discs).
The prices are estimates: 100 $/MIPS, 30 $/MB RAM, and 1 $/MB disc. These approximate 1994
prices.

Table 1: Two large database machines of 1994, each costing 1.6M$.

 MANY-SMALL PROCESSORS (100) FEW-BIG PROCESSORS (10)
 CPUS + MEMORY DISCS CPUS + MEMORY DISCS
number: 100 X (30 MIPS+100 MB) 1000 X (1 GB/disk) 10 X (300 MIPS+1 GB) 1000 X (1 GB/disk)
sum 3 BIPS +10 GB 1 TB 3 BIPS + 10 GB 1 TB
price 100 x (3 k$ + 3 k$) 1000x 1k$ 10 x (30 k$ + 30 k$) 1000 x 1 k$
sum price: 600 k$ 1 M$ 600 k$ 1 M$
total price 1.6M$ 1.6M$

The ideas here apply to both architectures – but to simplify the discussion, the many-small-processors
design is assumed here.

In this presentation, CPUs are named by the numbers 0, 1,..., 99. Discs are attached to particular CPUs,
and are correspondingly named D$ddd where ddd is the disc number [0...999]. For example, disc 223
is named D$223 and is the third disc of processor 22.

1 The correct processor speed term is SPECint, but that is approximately a MIPS (million instructions per second).

 Quickly Generating Billion-Record Synthetic Databases

 3

30 mips

100MB

Card 0

10 Discs
10 GB

Figure 2. A diagram of a many-small computer

cluster consisting of 100 "cards" each containing a

moderately powerful processor equivalent to the PC

or workstation of 1993. The "card" includes the

processor, its communication hardware, its memory

and a small array of discs. The cards are inter-

connected by a high speed interconnect shown as

the "base-plane". It gives 1 GB/s point-to-point

connectivity between any pair of processors.

For simplicity, assume that the data of a table or index is range-partitioned among all the 1000 discs in
partitions of equal size. Each system has a slightly different syatax for table partitioning. To be
concrete, we use Digital's Rdb syntax [Hobbs]. Partitions are called storage areas in Rdb and are often
named by the disc on which they reside. Using Rdb syntax, the ACCOUNTS table of the TPC-A
Benchmark [TPC] on the many-small system would be defined by:

 create table ACCOUNTS (ID unsigned integer not null,
 BALANCE decimal(12,2) not null,
 CUSTOMER unsigned integer not null,
 FILLER character(92) not null,
 primary key (ID) (1)
)
 create storage map PARTITION for ACCOUNTS store using (ID)
 in D$000 with limit of 0999999,
 in D$001 with limit of 1999999,
 in D$002 with limit of 2999999,
 •••
 in D$997 with limit of 997999999,
 in D$998 with limit of 998999999,
 otherwise in D$999;

When an application selects, inserts, updates, or deletes a record of the ACCOUNTS table, the SQL
system locates the record in the correct partition. The application is unaware of the partitioning. Most
SQL systems provide a variant of this transparent partitioning.

The computation model is fairly simple. A sequential record read or insert costs 5,000 instructions and
a fraction of an IO. Algorithms here avoid anything but sequential record reads and writes because
sequential operations can run at disk device speed (5 MB/second or 50,000 records per second), while
random disk operations run a thousand times slower (50 IO/sec = 50 records/second) due to seek and

 Quickly Generating Billion-Record Synthetic Databases

 4

rotational latencies. One-way process-to-process messages have a fixed cost of 3K instructions, and a
marginal cost of one instruction per byte [Uren, Kronenberg, Thekkath]. Some systems cost ten times
as much for such services. In any case, the algorithms here minimize sending messages. If necessary,
they send a few large messages rather than many small ones. These computational costs are
summarized in Table 2.

Table 3: Cost of basic operations:
 record size 100 bytes
 sequential SQL record read or insert 5,000 instructions+ 0.01 IO
 random SQL record read or insert 25,000 instructions + 1.00 IO
 disk sequential read/write rate 5 MB/sec= 50,000 records/sec
 disk random read/write rate 50 IO/sec = 50 records/sec
 cost of a one-way M-byte message 3 k+ M instructions (speed of light latency is minimal)

 Quickly Generating Billion-Record Synthetic Databases

 5

3. Sequential Database Generation
The discussion begins by showing how to sequentially generate and populate a table. This algorithm is
then generalized to one that generates each partition in parallel. To make the discussion concrete, the
following sections take generating the TPC-A ACCOUNTS table as a running example [TPC]. The table
will have one billion hundred-byte records (.1 TB) partitioned among the 1000 discs as described in the
data definition Program (1) above. Each of the one thousand discs will store 100 MB of data as a B-
tree [Knuth]. Since B-trees are only 69% full at equilibrium, each disc will use 150 MB of storage to
hold it's B-tree. This is well below the 1 GB capacity of small discs. The remainder of the disk space
stores data from other tables.

The ACCOUNTS table above can be sequentially populated by the following simple SQL + C program2
/* sequentially load records with key in [base,base+count) into tablename */
void sequential_load(char *tablename, /* name of table to be loaded */
 long base, /* start key of load */
 long count) /* number of keys to load */
 {
 exec sql begin declare section;
 long key; (2)
 exec sql end declare section;
 for (key = base; key < base + count; key++)
 exec sql insert into :tablename values(:key, 0, 0, "");
 }

 In fact the entire database for a 10,000 tps-A database [TPC] can be loaded by the following program:
void sequential_load("accounts", 0, 1000000000); (3)
void sequential_load("tellers", 0, 100000);
void sequential_load("branches", 0, 10000);

Program (3) shows how to sequentially generate several tables with related statistics: the idea is that the
branch:teller:account cardinalities should be in the ratios 1:10:100,000, as in the schema: The entity-
relations ship diagram (4) shows this relationship. Branch B has the ten tellers: 10B, 10B+1, ...; and has
the hundred thousand accounts: 100000B, 100000B+1,.... The partitioning of these tables would be
defined to give each of the thousand discs ten branch records, one hundred teller records, and one
million account records. With 1,000 discs, disc i would get branch numbers [i•101..(i+1)•101-1], teller
numbers [i•102..(i+1)•102-1] and account numbers [i•106..(i+1)•106-1].

Branch

Teller Account

1:10 1:100,000

 (4)

2 A later section will show how to fill in the customer number with a unique and uncorrelated customer ID. The customer
number should be unique and uncorrolated with the account number. Here it is set to zero in all records. Also, standard SQL
does not allow table names to be host variables, but this and later programs assume it is allowed. One would have to use dyanic
SQL to get this effect in a standard SQL system.

 Quickly Generating Billion-Record Synthetic Databases

 6

4. Parallel Database Generation
The ideas in Programs (2) and (3) are fine for loading small tables (less than a million records), but they
use a single processor and so run one hundred times slower than an algorithm that divides the task into a
hundred smaller ones each running in parallel on a separate processor. Program (3) runs at 6,000
records/second given the performance assumptions of Table 3 (5,000 instructions per insert, 30 MIPS,
implies 6,000 inserts per second.) At that rate, the billion-record load would take almost two days. The
same load could run in twenty minutes if done in parallel on the hundred-processor cluster described by
Figure 2 and Table 3.

Parallel algorithms require a way to create processes on specific CPUS. Assume that a process can be
created in a cpu by calling3:
 int fork(int cpu) /* creates a process in the cpu and returns it's id */

The fork procedure is much like the UNIX fork() [Tanenbaum] but has a parameter specifying the
cpu in which the process is to be created. As with UNIX, the fork returns zero to the child process,
but returns the process identifier to the parent (forking) process. The child is a clone of the parent,
executing the same program with the same current state, but a completely separate process
environment.

 Program (4) below shows how to convert the sequential load of Program (2) above to a parallel
loader. A parallel loader proceeds by spawning a load process in each processor. The spawning time
is minimized by forking a binary tree of processes, forking 2n processes at depth n of the tree. Each
node follows the logic:
 (1) If I am not a leaf, fork my left child and right child.
 (2) Load my partition.
Figure 4 illustrates the idea. The logic is designed for a cluster of 2N nodes, but it works on smaller
clusters of M nodes. If each fork takes about one second (a high estimate), the entire startup of one
hundred processes will complete within eight seconds. Assuming the forking logic copies code and data
from the forker, there will be no bottlenecks at startup.

7
3 11

91 5 13

0 2 4 6 8 10 12 14

Figure 4. The process forking logic for a

cluster of 15 processors. cpu 7 forks loaders

into cpus 3 and 11, then cpu 7 proceeds to load

partition 7.

3 What is really needed is more akin to Unix exec than to fork, and has many more parameters.

 Quickly Generating Billion-Record Synthetic Databases

 7

The pseudocode for parallel load is:

#define CPUS 100 (5)
/* parallel load records into tablename */
/* first fork right and left child processes if right != left */
/* then sequentially load the partitions of this cpu */
void parallel_load(char * tablename, /* name of table to be loaded */
 long records, /* number of records to load */
 long left, /* cpu of left fork subtree */
 long right, /* cpu of right fork subtree */
 integer depth);/* recursion depth in forking */
 { long my_cpu = floor((left+right)/2);
 long part_size = floor(records/CPUS); /*
 long him; /* id of forked process */
 depth++; /* increase recursion depth */
 if (depth == 1) /* return after forking root process */
 { if (fork(my_cpu)) return; }; /* in center cpu. */
 /* spawn left subtree of processes */
 if (left < my_cpu)
 { him = fork(floor((left + my_cpu-1) / 2));
 if (him == 0) /* child code */
 {parallel_load(tablename, records,left,my_cpu-1,depth); return; }
 }
 /* spawn right subtree of processes */
 if (my_cpu < right)
 { him = fork(floor((my_cpu + 1 + right) / 2));
 if (him == 0) /* child code */
 { parallel_load(tablename, records,my_cpu+1,right,depth); return; }
 }
 /* fill the partition of this process */
 sequential_load(tablename, my_cpu * part_size, part_size);
 }; /* end of parallel_load() */
/* invoke parallel loader for a billion account records on 100 cpus */
void = parallel_load("accounts", 1000000000, 0, CPUS - 1, 0);

This code is easily modified to fork a process-per-disc rather than a process-per-processor if the discs
are the bottleneck. Notice that each generator process uses the same table name to generate the data
(transparency). The table partitioning criterion causes the records all to go to each loading process's
local disc.

Parallelism often suffers from problems of startup, interference, and skew [Gerber, Smith]. Program
(5) minimizes startup problems by parallel forking. Once the load process begins, the underlying system
acquires locks on partitions rather than on whole tables – at least that is the way many SQL systems
work. So, each partition loader can proceed in parallel and in isolation. The load operation is typically
not covered by transaction protection, so the recovery log is not a bottleneck-- rather it uses the old-
master-new-master recovery technique of dumping a copy of the table when the load completes.
Given these arguments, startup, interference, and skew should not be a problem for the parallel load.

 Quickly Generating Billion-Record Synthetic Databases

 8

Using the assumptions of Figure 2 and Table 3, the algorithm should generate 600,00 records per
second (60 MB/s) and generate1B records in less than 30 minutes.

 Quickly Generating Billion-Record Synthetic Databases

 9

5. Dense Unique Random Data Generation
The parallel data generator of the previous section correctly generated the sequential account numbers
but it did not generate the customer numbers – it just left them as zeros. Customer number is an
example of a general problem. Generating synthetic databases often requires a sequence of numbers
(i.e. field values) with the following properties:
 Dense: All the integers in [0..N] appear in the sequence.
 Unique: Each integer appears exactly once.
 Random: The sequence appears to be "random" (is pseudo-random).
These properties are often needed to make the cardinalities of selection expressions and join
expressions predictable – for example each customer should have exactly one account. Some
applications need synthetic data that is not uniformly distributed. Section 8 gives some ways to
transform uniform distributions into Gaussian, exponential, Zipfian, and other distributions.

We know of several ways to generate dense-unique-random numbers in the range [1..N]. The original
generator for the Wisconsin Benchmark [Bitton 1] kept an initially zero bitmap of length N and used the
system random number generator to pick the next free element for the series. This algorithm was
replaced in the original ASAP generator [Bitton 3] by a shuffle that built an array of pairs < (i,
random()) | i=1,... , N >. The array was then sorted on the second element to produce a shuffle of the
first element.

The bit filter algorithm uses order N space and order N2 time (about N tries are required to set the last
bit in the bitmap). The shuffle algorithm takes NlogN time and linear space, so is clearly superior to the
bit filter. If space is not an issue, shuffle is a good way to generate a dense-unique random series. But
for large databases or if several independent series are to be generated a more space-efficient algorithm
may be needed. The obvious choice is to generalize the shuffle to a sort:

Sort: Create a SQL table of two columns containing the dense sequence 1..N and a random sequence
based on a popular random number generator. Then the dense sequence is ordered by the random
sequence. Program (7) demonstrates this.

 Quickly Generating Billion-Record Synthetic Databases

 10

 exec sql create table T (sequence integer, rand integer); /* create temp table */
 for (i = 1; i <= N; i++) /* fill it with pairs */
 exec sql insert into T values (:i, :random()); /* */
 /* note that sequence values are dense and unique. */
 /* If ordered by the rand field, they will be random. */

 exec sql declare cursor answer for /* define a sql cursor to */
 select sequence from T order by rand; /* get data in the random order */

 exec sql open answer; /* read the table via that cursor */
 for (i = 0; i < N; i++) /* set next_value from */
 { exec sql fetch answer into :next_value;/* next record */
 /* process next value */
 } /* */
 exec sql close answer; /* */

This algorithm takes NlogN time and ~ N main memory space (sorting) and ~N disc space (storage of
table). For a billion records, the many-little configuration can do the sort in about thirty minutes and the
job in less than an hour.

Such schemes are somewhat inconvenient because they construct a set of files to drive data generation.
It would be more convenient to have a simple subroutine that could generate the next element of the
desired sequence in constant time and space (say 25 instructions and 100 bytes of storage). The idea
for such an algorithm is to generate the numbers using a generator of the cyclic group of integers under
multiplication. In essence, a random number generator is constructed for elements in the desired range.
The algorithm is:
 Pick a prime P larger than N and a generator G for the multiplicative group modulo P. Then the series
is:
 <Gi mod P | i = 1,...,P and (Gi mod P) = N>
and the program to generate the series is:

#define P xxx; /* see Table 5 for good values */ (8)
#define G xxx; /* see appendix 1 for good values */
static seed = G; /* start the seed at G */
long next_value(long N) /* function to compute next value */
 { seed = (G * seed) % P ; /* seed = next in series mod prime */
 while (seed > N) seed = (G * seed) % P; /*
discard all > N */
 return seed; /* return new value */
 } /* end of generator */

This scheme, due to Gray and Englert, was successfully used to generate very large "Wisconsin
Benchmark" databases on the Intel Hypercube and is now the standard way to generate Wisconsin
databases [DeWitt 2]. To understand how it works, consider the numbers between 1 and 10. The
powers of 8 mod 11 form a dense unique sequence of these numbers: 8, 9, 6, 4, 10, 3, 2, 5, 7, 1. In

 Quickly Generating Billion-Record Synthetic Databases

 11

general, if N is a prime the multiplicative group consisting of [1..N-1] has many generators: elements
whose powers enumerate the group without repetition until they generate 1.

Clearly, the generator scheme is preferable – it takes constant time and constant space. But not just
any generator will give a good pseudo-random sequence. There are many tests for "randomness". We
used the spectral test recommend by Knuth [Knuth]. In his terminology, all the random number
generators in this paper pass the spectral test "with flying colors" in dimensions 2 through 6. We applied
the test to primes just larger than powers of ten and recommend the generators of Table 5. Section 7
describes how to use powers of 2 instead of primes.

Table 5. A list of recommended primes and generators for each decade from 10 to one billion.

 Decade Prime Generator
 10 11 2
 100 101 7
 1,000 1,009 26
 10,000 10,007 59
 100,000 100,003 242
 1,000,000 1,000,003 568
 10,000,000 10,000,019 1792
 100,000,000 100,000,007 5649
 1,000,000,000 2,147,483,647 16807

When the prime and generator are large compared to the machine's arithmetic, one needs to use a
technique shown in Program (9) due to Schrage [Schrage] to keep the results from overflowing. P and
G must be chosen so that B is less than A. This will always be true if G < P . Machines with 64-bit
registers and arithmatic make this technique unnecessary.

#define P xxx; /* see Table 3 for good values */ (9)
#define G xxx; /* of prime and generator */
#define A (P / G); /* A = prime / generator */
#define B (P % G); /* B = prime mod generator */
static seed = G; /* start the seed at G */
long next_value(long N) /* function to compute next value */
 { long seed_over_A = seed / A; /* compute the components of seed */
 long seed_mod_A = seed % A; /* compared to A = (P/G) */
 do /* loop if next is bigger than N */
 { /* Use Schrage's function to */
 seed = (G * seed_mod_A) - (B * seed_over_A) ; /* compute G*seed mode P */
 if (seed < 0) seed = seed + P; /* without overflow */
 } while (seed >= N) /* discard all >= N */
 return seed; /* return new value */
 } /* end of next_value() */

 Quickly Generating Billion-Record Synthetic Databases

 12

6. Generating Random Data
The ideas of the previous section can now be applied to generate a complete table. Program (3) above
gave an example of generating several tables with related statistics: the idea there was that the
branch:teller:account cardinalities should be in the ratios 1:10:100,000, as in the schema (4). This is a
general phenomenon, but the requirements are often more complex. One requirement that was
skipped in Program (2) was that the customer id field be unique and be uncorrelated with the account id
– rather it was just filled with zeros. The requirement is that each customer have a unique bank account
as shown in (9).

Branch

Teller Account

1:10 1:100,000

Customer1:1
 (9)

 Using the ideas of the pervious section, Program (2) can be refined to generate each partition of the
account table in parallel, including the random-unique-dense customer number as follows:

/* sequentially load records into i'th partition of tablename */
void sequential_load(char *tablename, /* name of table to be loaded */
 long records, /* number of records in table */
 long count, /* # records in each partition */
 long part_no) /* number of partition to load */
 { /* */
 long i, j; /* loop control variables */
 long base = part_no * count; /* start key for this partition */
 long parts = records / count; /* number of partitions in file */
 exec sql begin declare section; /* SQL variables */
 long key, customer; /* account id, customer id */ (10)
 exec sql end declare section; /* */
 for (i = 0; i < part_no; i++) /* the i'th processor skips to */
 customer = next_value(records); /* p(i) in generator's sequence */
 for (key = base; key < base + count; key++) /* now generate the partition */
 {customer = next_value(records) - 1; /* get next customer number */
 exec sql insert into :tablename (id, balance, customer, filler) /* */
 values(:key, 0,:customer, "");/*generate 1/n'th */
 for (j = 0; j < CPUS; j++) /* skip seed to p(i+CPU) */
 customer = next_value(records); /* i.e. skip p(j) of others */
 } } /* end of sequential_load() */

The generator of the i'th cpu is invoked as:

 void sequential_load("accounts", records, records/CPUS, i);

Each of the one hundred processors will compute the same random series based on the
next_value(records) procedure. But each generator will only use one hundredth of the series. If
the series is s0, s1, s2,....,s999999999, the i'th cpu will use the subsequence si, s1cpus+i, s2cpus+i,
s3cpus+i, s4cpus+i,... Each of these subsequences is random and unique, and the union of them is dense.

The i'th generator begins by calling next_value() "i-1" times to skip over the values of the other

 Quickly Generating Billion-Record Synthetic Databases

 13

generators. Then after inserting a record, the generator calls the next_value() CPUS times, but only
uses the last value returned. There is a lot of wasted work in this design: the series is computed one
hundred times and each generator only uses 1% of the values it generates. The premise is that calls to
next_value() are cheap (~25 instructions) so that 100 calls (2500 instructions) is small compared to
the insert cost (~5000 instructions). The generator should produce 1B records in less than 1 hour on
the many-small configuration.

Scaling this algorithm to thousands of generators requires a variation that has less wasted work. One
might partition the series into 1000 segments and precompute the starting point pi for each partition.
These values could be stored in a global array. Then each partition generator would start at sx, for
some x, and would use the sequence sx, sx+1, sx+2,... and no calls to next_value() would be

wasted.

A different approach avoids this pre-computation and minimizes wasted computation. Table 5 shows
that for large N, P can be chosen just slightly larger than N (within 1% of it). Suppose we generate a
database of P-1 elements rather than N elements. In that case, no members of the series <Gi mod P | i
= 0,...,P > would be discarded. In turn this means that each partition can compute its next element by
multiplying the previous element by GCPUSmod P . Let n = ? N/CPUS? and assign the following series
to the j'th partition for j = 0,...,CPUS - 1:
 <GCPUS•i+j mod P | i = 0,...,n-1>
This series is very easy for partition j to compute. First it computes the first element A ? Gj mod P and
then B ? GCPUSmod P . These two numbers can be computed in ln(CPUS) multiplies and divides. Then
the j'th partition uses the series:
 <(A • Bi) mod P | i = 0,...,n -1>.
In this approach, there is no need to precompute a partition table and there are no wasted calls to
next_value(). If we accept this relaxed definition of partitions (the last partition may be slightly larger
than the others and some elements may be a little larger than N), then it will turn out that computing
indices is much easier

These techniques can easily generate tables with 1:N relationships. Suppose, as in (9), the BRANCHES
table is to have 1,000 records and the TELLERS table is to have 10,000 records. If, P is chosen as
1,009 and G is chosen as 229 (as Table 5 recommends), then BRANCHES can be generated as in
Program (10). By using the same prime and generator for the BRANCH field of the 10,000 record
TELLERS table, the TELLERS table will have exactly 10 tellers for each branch identifier. More generally,
each record in one table will match the value of M records in the second table if the second table has M
times as many records, and the "join-fields" of the two records use the small-table generator.

 Quickly Generating Billion-Record Synthetic Databases

 14

7. Generating Indices on Random Data
All the programs so far have carefully (but implicitly) generated data in primary key order, the next
generated record is placed right after the previous record in the B-tree or other clustering mechanism.
This means that the programs have generated the data in sequential order and so that disc IO time has
not been an issue. Modern discs can absorb data at 5 MB/s – with the possibility of much higher data
rates if striping is used [Kim]. Assuminmg 100 byte records, this is 50,000 records per second. If each
generated record went to a random disk page, data rates would drop by a factor of 1000 to 50 records
per second since each record would cause a seek, rotate, a read transfer and then a rotate and a write
transfer. On 1993 discs, each random disk IO consumes about 20ms of disc time and the rate is at
most 50 IO/s. So, it is essential that records be generated in sequential order unless the entire table
can fit in main memory.

Program (10) generates the ACCOUNT table in ACCOUNT.ID order; but it generates the
ACCOUNT.CUSTOMER field in random order. Applications often need an index on such random fields.
For example, an ACCOUNT.CUSTOMER index would allow quick lookup of a customer's ACCOUNT given
the customer number. Such an index is defined in SQL by4:

 create unique index account_customer on account (customer);

The index is actually a table with the schema:
 create table account_customer (customer unsigned integer not null,
 id unsigned integer not null, (12)
 primary key (customer),
 foreign key (id) references account(id)
);

If (i,j) is a record in the account_customer index then;
 i is the j'th value returned by next_value(records)
or using G and P as defined in (8):
 i ? Gj mod P.

More formally, j is the discrete logarithm of i [Coppersmith].

How can this index be generated in parallel with linear speedup and scaleup? One could compute the
discrete logarithm, but [Coppersmith] indicates that each computation would be millions of instructions.
Three schemes can be used:

4 As usual, we assume this table (index) is uniformly partitioned among the 1000 discs. The definitions of the
partitions are omitted here for simplicity.

 Quickly Generating Billion-Record Synthetic Databases

 15

(1) Scan-and-sort: Read the base table in parallel, projecting out the two desired fields, and parallel
sort the result into the target index. In SQL this would be expressed as:

 insert into account_customer
 select customer, id
 from account
 order by customer;

(2) Generate-and-sort: In each processor, generate the index data to be stored by that processor's
disks, sort it, and then insert it into the local index partitions.

(3) Compute: Compute the discrete logarithm quickly and generate the index in the same way one
generates the base table.

The index is one billion records of eight bytes each, 8 GB in all. So, each of the 100 processors must
deal with an 80 MB partition of the index. This will just fit in each processor's 100 MB memory. The
scan-and-sort approach (scheme 1 above), the processors can generate the index data in parallel to the
data generation, sending index records to the appropriate partitions (cpus) as the base table is generated
locally. The receiving processors can sort the indices locally in their memory as the data arrives or is
generated. This is a credible and scaleable technique, needing about 10 MB/s network bandwidth to
move the 8 GB from source to destination for a one-hour job. But the technique is memory intensive,
just barely fitting in the processor memories. If the table keys were larger of if there were more indices,
then the scan-and-sort technique would require a disk-based sort.

Scheme 2 is a more cpu-intensive sorting scheme - but uses no network messages. Each processor
generates the entire base-table sequence, and extracts the index subsequence that applies to the local
processor. In particular, if each partition has R index records and if the whole sequence is s1, s2 s3...

then the i'th processor uses the subsequence:
 <<sj , j> | iR = sj ??(i+1)R)>
These are the index entries for the i'th partition. They are then sorted on the sj attribute and inserted

into the local index partition in sequential order. The following program shows this cpu-intensive
enumerate-and-sort algorithm.

 Quickly Generating Billion-Record Synthetic Databases

 16

/* global variables: seed , generator, CPUS, my_cpu */
/* R is records per partition */
void index_load(long records)
 { long R = records / CPUS; /* R records per partition */
 long my_first_record = my_cpu * R; /* base of index partition */
 long i,j = 0, customer; /* working variables */
 exec sql begin declare section; /* */
 struct { long account; /* array holding in-memory index to be */
 long customer; /* sorted on the "random" customer id */
 } sorted [R]; /* */ (13)
 exec sql end declare section; /* */
 /* fill in the array with the unsorted values */
 for (i = 0 ; i < records; i++) /* for each account number */
 { customer = next_value(records); /* get next customer number */
 if ((my_first_record = customer) & /* if customer # is in the range */
 (customer < my_first_record + R)) /* of this partition, use the entry*/
 {sorted.account[j] = i; sorted.customer[j] = customer; j++} /* */
 }; /* assert: now sorted[i] = G inverse */
 /* sort the array on the second attribute (customer) */
 sort(sorted) on sorted.customer; /* sort the array on customer attribute */
 for (j = 0; j < R; j++) /* copy the array to the index */
 exec sql insert into account_index values (:sorted.customer[j] , :sorted.account[j]);
 };

The generation step should take 30 instructions per iteration, and there are 1 billion iterations, so it will
take 1000 seconds on a 30 MIPS computer. The sort deals with ten million records. At 30 instructions
per compare/exchange, an nlog(n) sort will need about 300 seconds. Once that is complete, the write
of the data in bulk to the index (at 1000 instructions/insert) should take 300 seconds. This adds up to
about thirty minutes. In summary, indices for large tables can be built in parallel while the base tables
are being built. The generator described here can run in parallel with the base table generation if
sufficient processors and memory are available.

The third index technique involves quickly computing discrete logarithms. That is, given alternate-key
value k, quickly compute primary key value i such that
 k ? Gi mod P. (14)
Solving this problem for arbitrary k when P is a large prime is believed to be quite difficult. Indeed, this
is what makes some cryptographic protocols seem secure. Even for smaller primes, around a billion,
each discrete logarithm calculation takes about p time and space. The sorting algorithm above would
be faster.

Picking P as a power of 2, say 2n, allows computing discrete logs in n steps (logP time) and constant
space. The following equation is the key to finding the discrete log of k when P is a power of 2:

 G2i ? 1 + 2 i +1 (mod 2 i+3). (15)

 Quickly Generating Billion-Record Synthetic Databases

 17

The problem is that the values of the series G, G4, G16,.. , G2i,... are all congruent to 1 mod 4 (all their
binary representations end in "01"). The solution is to divide the numbers by 4 to get a dense series.
The following code computes the discrete log of k (the 2-adic log):

#define POWER 32 /* the P will be 232 */
#define G 37117 /* Generator for P from Table 6 */
static long P = pow(2,POWER); /* compute P */
static long P_MASK = P - 1; /* mask to avoid mod P division */

/* do mod P multiplication, in the *4 + 1 space. The equation is: */
/* (a * 4 + 1) * (b * 4 + 1) = (a + b + 4 * a * b) * 4 + 1 */ (16)
long mul(long a, long b) /* */
 return ((a + b + 4 * a *b) & P_MASK); /* */

/* discrete_log(k) returns the discrete log of k with respect to G */
/* At entry G^(x) = 1 + 4 * j
/* the invariant of the loop is: G^(x+ans) = 1 + 4 * up */
/* where the last i bits of up are zero */
long discrete_log(long j) /* */
 { /* */
 long up = j, /* up is j with G^i removed */
 long i; /* index on radix bits of k */
 long ans = 0; /* the target */
 long radix = 1; /* radix = 2^i in the loop below */
 long Gpow = G; /* Gpow = G^2i */
 for (i = 1; i < POWER; i ++) /* for each bit POWER */
 { if (up & radix) /* if 2^i divides k */
 { ans = ans + radix; /* equation (15) says add 2^i */
 up = mul(up, Gpow); }/* preserve loop invariant */
 radix = radix * 2; /* advance radix = 2^i */
 Gpow = mul(Gpow, Gpow); /* advance Gpow = G^2i */
 } /* end of loop */
 /* now up = 0 so G^(x+ans) = 1 due to the invariant. */
 /* by Fermat's theorum, x+ans = POWER so discrete log is POWER-ans */
 return (POWER - ans); /* discrete log of k mod 2^POWER */
 } /* end of discrete_log() */

 Quickly Generating Billion-Record Synthetic Databases

 18

Table 6 is a catalog of values for POWER and G that have passed the spectral test.

Table 6. Powers of 2 and generators to compute discrete logs.

Field (max value) POWER G G-1

1...28-1 255 10 29 565

1...29-1 511 11 29 565

1...210-1 1,023 12 53 541

1...211-1 2,047 13 53 4637

1...212-1 4,095 14 117 4061

1...213-1 8,191 15 125 30,933

1...214-1 16,383 16 229 48,365

1...215-1 32,767 17 221 55,157

1...216-1 65,535 18 469 77,693

1...217-1 131,071 19 517 31,437

1...218-1 262,143 20 589 329,349

1...219-1 524,287 21 861 747,765

1...220-1 1,048,575 22 1,189 2,638,637

1...221-1 2,097,151 23 1,653 5,577,181

1...222-1 4,194,303 24 2,333 12,124,469

1...223-1 8,388,607 25 3,381 32,611,613

1...224-1 16,777,215 26 4,629 51,785,021

1...225-1 33,554,431 27 6,565 32,056,877

1...226-1 67,108,863 28 9,293 260,289,669

1...227-1 134,217,727 29 13,093 94,679,213

1...228-1 268,435,455 30 18,509 561,787,013

1...229-1 536,870,911 31 26,253 31,247,429

1...230-1 1,073,741,823 32 37,117 3,730,050,133

1...231-1 2,147,483,647 33 52,317 766,551,637

1...232-1 4,294,967,295 34 74,101 6,731,589,341

1...233-1 8,589,934,591 35 104,581 27,095,900,237

1...234-1 17,179,869,183 36 147,973 5,486,951,117

1...235-1 34,359,738,367 37 209,173 46,427,772,477

1...236-1 68,719,476,735 38 296,029 114,535,788,533

1...237-1 137,438,953,471 39 418,341 273,639,336,365

1...238-1 274,877,906,943 40 591,733 411,014,549,725

 Quickly Generating Billion-Record Synthetic Databases

 19

1...239-1 549,755,813,887 41 836,661 1,051,514,334,749

1...240-1 1,099,511,627,775 42 1,183,221 1,540,143,871,581

1...241-1 2,199,023,255,551 43 1,673,485 2,064,054,447,557

1...242-1 4,398,046,511,103 44 2,366,509 6,563,150,205,861

1...243-1 8,796,093,022,207 45 3,346,853 34,112,825,814,573

1...244-1 17,592,186,044,415 46 4,732,789 25,355,912,192,221

1...245-1 35,184,372,088,831 47 6,693,237 80,269,716,416,221

1...246-1 70,368,744,177,663 48 9,465,541 241,407,036,416,013

1...247-1 140,737,488,355,327 49 13,386,341 3,774,646,034,285

1...248-1 281,474,976,710,655 50 18,931,141 787,472,057,538,829

1...249-1 562,949,953,421,311 51 26,772,693 105,651,650,1967,997

1...250-1 1,125,899,906,842,620 52 37,862,197 183,937,449,308,9565

1...251-1 2,251,799,813,685,250 53 53,545,221 1,969,087,082,879,949

1...252-1 4,503,599,627,370,490 54 75,724,373 11,327,587,540,653,821

1...253-1 9,007,199,254,740,990 55 107,090,317 6,288,511,001,205,061

The use of numbers near a billion strains the word size of "old" 32-bit computers. In particular, if P is
bigger than 216 or so, multiplication modulo P cannot be done without some programming trick.
Schrage's technique, as shown in program (9), can be used to fit such arithmetic into small words
[Schrage].

In summary, indices on synthetically generated data can be built in one of three ways. Scan-and-sort,
generate-and-sort, or compute. The computational method has some restrictions on the size of the table
and on the generator, but is the most efficient approach for large tables. The computational approach is
nicely suited to parallel algorithms.

 Quickly Generating Billion-Record Synthetic Databases

 20

8. Generating Data Having Non Uniform Distributions

Having explained how to generate unique data, now we consider generating other data distributions.
The examples above all required dense-unique values. Often, the database needs values obeying some
common distribution. The size of cities, lengths of words, and frequency of words is known to follow a
Zipfian distribution. Measurement errors often obey a Gaussian distribution, and the inter-arrival
intervals of events often follow a Poisson or negative exponential distribution. Such domains are easily
generated by skewing a uniform distribution. This section catalogs the standard distributions, and adds
a little to the generation of self-similar and Zipfian distributions.

Program (10) demonstrated the simplest case, repeating some value a constant number of times in
another field. It generates ten accounts per branch – repeating each branch number ten times in the
ACCOUNT.BRANCH domain.. Suppose we wanted a the values of some field or the number of child
records to follow some more complex distribution. Then the following code might be appropriate

create table parent (master integer not null,
 rest char(96),
 primary key (master)
);
create table child (master integer not null,
 detail integer not null,
 rest char(92),
 primary key (master,detail),
 foreign key (master) references parent
);
/* sequentially load records with key in [base,base+count) into tablename */
void sequential_load(char *parent, /* name of parent table */
 char *child, /* name of child table */
 long base, /* start key of load */
 long limit) /* first key after load */
 { /* */
 exec sql begin declare section; /* */
 long master, detail; /* master and detail key values */ (25)
 exec sql end declare section; /* */
 for (master = base; master < base + count; master++) /* for each master key */
 {exec sql insert into :parent values(:master, ""); /* add master rec */
 count = distribution(); /* create that many child recs */
 for (detail = 0; detail < count; detail++) /* */
 exec sql insert into :child values(:master, :detail, ""); /* */
 } /* end master loop */
 } /* end sequential_load() */

This code encapsulates the distribution of child cardinalities. It only remains to describe ways of
generating the popular distributions. The following table presents the code to generate the distribution
on the left and a graph of the distribution on the right. See [Ripley], [Jain], or [Press] for more details.

 Quickly Generating Billion-Record Synthetic Databases

 21

The programs below assume randf() returns values distributed uniformly in [0..1] and random()

returns values distributed uniformly in [0..?] or some approximation thereof (e.g. [0..232]).

The uniform distribution
 equation: f(x) = 1 x ? [0,1]

 mean: ? = 0.5

 standard deviation: ? = .5

 inverse distribution:
 x= randf() where randf() ? [0,1]
code:
double uniform()
 {return randf();}

1

? 1
?

Negative exponential

 equation: f(x) =
1
?
 e

-?x
 : x ? [0,8]

 mean:
1
?

 standard deviation:
1
?

 inverse distribution: ??Error!,?)

 where random() ? [0,8]

code:
 double neg_exp(double lambda)
 { return ln(random()) / lambda; }

0

1

0 1? 2? 3? 4? 5? 6?

 Quickly Generating Billion-Record Synthetic Databases

 22

Gauss = Normal Distribution:

equation: ?(x) =
1

? 2?
 e

-
1
2?
?

?
?x-?

?
2

 : x ? [0,8]

 mean: ?

 standard deviation: ?

 inverse distribution:

? ? ? ? ?? +
?
??

1

12

(random()-0.5)

 where randf() ? [0,1]
 deviation is ~.5% see [Ripley, pp 54]
code:
double gauss(double mu, sigma)
 { int i; double ans = 0.0;
 for (i = 0; i<12; i++)
 {ans = ans + (randf()) -0.5;}
 return (mu + ans/6);
 }

-3? ? 1? 2? 3? -2? -1?

Poisson

equation: f(x) = e
-?

??
?k

k! : k = 0, 1, ...

 mean: ?

 inverse distribution: [Ripley, pp 55].
code:
 long poisson(long lambda)
 { long n = 0;
 double c = pow(e,-lambda);
 double p = 1.0;
 while (p >= c)
 {p = p * randf();
 n++;}
 return (n-1);
 };

0 1? 2? 3?

 Quickly Generating Billion-Record Synthetic Databases

 23

Self-Similar (80-20 rule)

Integers between 1...N.

The first h•N integers get 1-h of the distribution.

For example: if N = 25 and h= .10, then

 80% of the weight goes to the first 5 integers.

 and 64% of the weight goes to the first integer.

code:
 long selfsimilar(long n, double h)
 { return (1 + (int)
 (N * pow((randf(),log(h)/log(1.0-h)))
);

 };
1 2 N
h•N

1-h

(h-1)N

Zipf's "Law"

Integers between 1...N.

Integer k gets weight proportional to (
1
k .) theta

 where 0 < theta < 1 is the skew

code:
long zipf(long n, double theta)
 {
 double alpha = 1 / (1 - theta);
 double zetan = zeta(n, theta);
 double eta =
 (1 - pow(2.0 / n, 1 - theta)) /
 (1 - zeta(theta, 2) / zetan);
 double u = randf();
 double uz = u * zetan;
 if (uz < 1) return 1;
 if (uz < 1 + pow(0.5, theta)) return 2;
 return 1 +
 (int)(n * pow(eta*u - eta + 1, alpha));
 };

1 2

5%

3%

.5%

1%

3 5 10 20 30 50 100

The only "new" distribution here is the self-similar one, often used for situations following the 80/20 rule
or some other highly skewed self-similar distribution. Self similar distributions have the property that
within any region of the distribution, the skew is the same as in any other region. So, for example, all
subranges of the 80/20 (h=.20) self similar distribution follow the 80/20 rule.

A set of values of the form 1..k is called a "hot spot" because any of the values in this set has more
weight (and hence is "hotter") than any value outside the set. Self-similar distributions are characterized
by the property that hot spots have a distribution similar the entire range of values. The Zipf

 Quickly Generating Billion-Record Synthetic Databases

 24

distributions are characterized by the property that the frequency distribution is a straight line when
plotted on a log-log graph.

If the hot spot is supposed to be randomly spread throughout a range of values, then it is necessary to
permute the values randomly. Generating random permutations is discussed elsewhere in this paper. In
principle, generating a random permutation and generating a distribution are independent problems.
However, hot spot distributions like the self-similar and Zipf distributions can be permuted more easily
than general distributions. The trick is to assume that the "cold" values are uniformly distributed. This
greatly simplifies the generation of the permutation since it now just involves choosing the relatively small
number of "hot" values. This is especially important when it is necessary to perform the computation in
parallel. The "hot" values can be chosen at one node and broadcast as a table to the rest of the nodes.
The algorithms above are used to compute an index into the table of "hot" values. If the index is too
large, then a value is chosen uniformly at random from all possible values (ignoring whether it is already
in the table of hot values). The index computations can be done independently at each node so long as
the seeds for the pseudo-random number generator are chosen independently.

The number of hot values that require special treatment depends on how accurately one needs to
represent the distribution in question. (One should bear in mind that the self-similar and Zipf distributions
are themselves only approximations to what is observed in actual systems.) As an example, consider a
self-similar distribution following the 95/5 rule. A table of just 313 out of a billion possible values would
account for over 77% of the weight of this distribution.

The program presented here to generate a Zipf distribution uses constants alpha, zetan and eta
derived from theta and n. The function zeta returns the sum
 (1/1)theta + (1/2)theta +...+ (1/n)theta.

The approximation uses the same technique as that in Knuth (volume 3, page 398), but corrects the
weight assigned to the first two values to get a more accurate approximation.

It is commonly thought that self-similarity and the Zipf distribution are the same, or at least close. This
misconception apparently stems from a misleading approximation made in Knuth (volume 3, page 398).
Knuth's approximation is adequate for the statistic being computed there but should not be construed as
asserting that the self-similar and Zipf distributions are close in the usual probabilistic sense. In particular,
other statistics can yield very different results for the self-similar and Zipf distributions. However,
Knuth's calculation can be modified to produce a reasonable approximation as we noted above.

 Quickly Generating Billion-Record Synthetic Databases

 25

The log-log graph of Zipf's distribution with parameter 0.5 is shown above. It shows the largest weight
on 1, the second largest on 2, and so on.

 Quickly Generating Billion-Record Synthetic Databases

 26

9. Summary

This paper first showed how to convert a simple sequential load into a parallel load – turning a two-day
task into a one-hour task. It then explored the ways to generate synthetic data. At first it focused on
generating the primary keys of records and values uncorrelated to these keys: dense-unique-pseudo-
random sequences. Then, attention turned to building indices on these synthetic tables – either by
sorting, or by using discrete logarithms. By careful selection of generators, the discrete log problem is
tractable and indices can be quickly generated within the 1-hour limit we set for the billion-record load.

The paper then looked at skewed distributions. It presented the standard ways to generate uniform,
exponential, normal, and Poisson distributions. It went into more detail on the new topic of self-similar
and Zipfian distributions.

Using these techniques, one can generate billion-record databases in an hour, and a two terabyte
databases per day.

10. Acknowledgments

This paper has been in-progress since 1987. During that time, many people have contributed ideas to
it. Some of the inspiration for the work came from Dina Bitton and Jeff Millman who showed us the
data generators they used in their DBstar product. Dave DeWitt was an early user of these algorithms
and has been a source of ideas and encouragement. Betty Salzberg explained the concept of discrete
logs to Jim Gray an put him in contact with that community.

 Quickly Generating Billion-Record Synthetic Databases

 27

11. References

[Bitton 1] Bitton, D., DeWitt. D, Turbyfill, C., Source code for Wisconsin Database Generator distributed on the
"Wisconsin Benchmark Tape", Computer Science, U. Wisconsin, Madison, WI. 1984

[Bitton 2] Bitton, D., et al., "Benchmarking Database Systems: A Systematic Approach", 9th VLDB, Nov. 1983.

[Coppersmith] Coppersmith, D., et. al., "Discrete Logarithms in GF(p)", Algorithmica, 1(1), 1986, pp. 1-15.

[Thekkath] Thekkath, C.A., Levey, H.M., Limits to Low-Latency Communication on High-Speed Networks, ACM
TOCS, 11(2), May 1993, pp. 179-203.

[DeWitt 1] DeWitt, D. et. al., "Gamma - A High Performance Dataflow Database Machine", Proc. 12th VLDB, Sept.
1986, pp. 228-236.

[DeWitt 2] DeWitt, D., et. al., "The Gamma Database Machine Project", IEEE Trans. on Knowledge and Data
Engineering, March 1990.

[DeWitt 3] DeWitt, D.J., Naughton, J.F., Schneider, D.A. "Parallel Sorting on a Shared-Nothing Architecture Using
Probabilistic Splitting", Proc. First Int Conf. on Parallel and Distributed Info. Systems, IEEE Press, Jan.
1992, pp. 280-291.

[Englert] Englert, S., et. al. "A Benchmark of NonStop SQL Release 2 Demonstrating Near-Linear Speedup and
Scaleup on Large Databases", Proc. of 1990 ACM Sigmetrics Conference. May 1990.

[Gerber] Gerber, R.H., "Dataflow Query Processing Using Multiprocessor Hash-Partitioned Algorithms", Ph.D.
Thesis, Comp. Sci. TR 672, U. Wisconsin, Madison. Oct. 1986.

[hobbs] Hobbs, L., England, K.,uren, Digital Press, Bedford, MA, 1991.

[Horst] Horst, R., Chou, T., "The Hardware Architecture and Linear Expansion of Tandem NonStop Systems", Proc.
12th Int. Conf. Computer Architecture, June 1985.

[Jain] Jain, R., The Art of Computer Systems Performance Analysis, John Wiley & Sons, New York, 1991

[Kim] Kim, M.Y., "Synchronized Disk Interleaving", IEEE TOC, 3(11), Nov. 1986. pp. 978-988.

[Knuth] Knuth, D., The Art of Computer Programming, V. 2, Chapter 3, 2nd ed., Addison Wesley, 1981

[Kronenberg] Kronenberg, N., H. Levey, W. Strecker and R. Merewood. “The VAXcluster Concept; An Overview of
a Distributed System.” Digital Technical Journal. 1(3): Jan. 1987, pp. 7-21.

[Nyberg] Nyberg, C., Barclay, T., Gray, J., Lomet, D., "AlphaSort - A High-Speed Sort for RISC Machines" Digital
San Francisco Systems Center Technical Report TR 93.2. February, 1992.

[Press] Press, W.H., Teukolsky, S.A., Vettering, W.T., Flannery, B.P., Numerical Recipes in C - 2'nd Edition,
Cambridge Univ. Press. Cambridge, 1992

[Ripley] Ripley, B.D., Stochastic Simulation, John Wiley, 1987.

[Schrage] Schrage, L.E., "A More Portable FORTRAN Random Number Generator", ACM TOMS, V. 5(2), May 1979,
pp 132-138.

[Smith] Smith, M., et al., "An Experiment on Response Time Scaleability", Proc. 6th Int. Workshop on Database
Machines, June 1989

 Quickly Generating Billion-Record Synthetic Databases

 28

[Stonebraker] Stonebraker, M., "The Case for Shared-Nothing", Database Engineering, V. 9(1), Jan. 1986.

[Tanenbaum] Tanenbaum, A.S., Operating Systems: Design and Implementation, Prentice Hall, 1986.

[Teradata] "The Genesis of a Database Computer: A Conversation with Jack Shemer and Phil Neches of Teradata
Corporation", IEEE Computer, Nov. 1984. or DBC/1012 Database Computer System Manual, Release
1.3, C10-0001-01, Teradata Corp., Los Angeles, Feb. 1985.

[TPC] "Transaction Processing Performance Council Benchmark A", Chapter 3 of Performance Handbook for
Database and Transaction Processing Systems, Morgan Kaufmann, San Mateo, 1993

[Uren] Uren, S., "Message System Performance Tests", Tandem Systems Review, V3.4, pp. 27-32, Dec. 1986.

