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Abstract: Evaluating database system performance often requires generating synthetic databases  – ones having 

certain statistical properties but filled with dummy information.  When evaluating different database designs, it is 

often necessary to generate several databases and evaluate each design.  As database sizes grow to terabytes, 

generation often takes longer than evaluation. This paper presents several database generation techniques.  In 

particular it discusses: 

 (1) Parallelism to get generation speedup and scaleup.  

 (2) Congruential generators to get dense unique uniform distributions. 

   (3) Special-case discrete logarithms to generate indices concurrent to the base table generation. 

 (4) Modification of (2) to get exponential, normal, and self-similar distributions. 

The discussion is in terms of generating billion-record SQL databases using C programs running on a shared-nothing 

computer system consisting of a hundred processors, with a thousand discs.  The ideas apply to smaller databases, 

but large databases present the more difficult problems. 
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1. Introduction 
Evaluating database system performance often requires generating large synthetic databases  – ones 
with certain statistical properties, but otherwise filled with dummy information.  When evaluating 
different database designs, it may be necessary to generate several databases and evaluate each design.  
As database sizes grow to terabytes, generation often takes longer than evaluation.  
 
Large database load or generation operations last for more than a week.  The goal here is to quickly 
generate a large database by using parallel algorithms and execution.  To make the problem concrete, 
the goal is to generate a billion record ACCOUNTS table for the TPC-A benchmark [TPC].   Generating 
and loading this table using sequential algorithms would take several days.  The goal here is to invent 
algorithms and techniques that generate this billion-record table and its indices in an hour.    
 
In outline, the paper first postulates a model of parallel computer hardware and software, so that we can 
quantify the performance of each algorithm.   Then, the paper shows how to convert a sequential load to 
a parallel load by partitioning the job and forking a process-per-partition.   Next the tasks of synthetic 
data generation are investigated.   Parallel algorithms are given for generating dense-unique-pseudo-
random sequences, and for generating indices on these sequences.   After that, the paper investigates 
generating non-dense non-uniform distributions with special attention paid to Zipfian and self-similar 
distributions. 
 
First consider parallel computer architecture and the associated performance and cost model . 
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2. The Computation Model 
We assume a shared-nothing computer architecture typified by the Tandem, Teradata, or Gamma 
machines, by workstation clusters from DEC, IBM, HP, Novell, and Sun, and by processor arrays like 
the Intel Hypercube [Stonebraker, Horst, Teradata, DeWitt 1, DeWitt 3].  In these systems, each 
processor has a private memory and one or more discs.  The processors are connected via a high-
speed network and processes communicate via messages.  Parallelism and minimal process interaction 
are major design goals in these systems.  Shared-disc systems like IBM's Sysplex and Digital's 
VMSclusters are gravitating toward this shared-nothing architecture as the number of processors grows.  
 
The ideas presented here apply to a spectrum of execution environments  – a many-small environment  
of hundreds of processors typified by Teradata and Gamma, and a few-big environment of tens of 
processors typified by Tandem and VMScluster.   In Table 1, the two systems each have 3 BIPS (billion 
instructions per second1) of processing power, 10 GB of RAM, and 1 TB of disc storage (1000 discs).  
The prices are estimates: 100 $/MIPS, 30 $/MB RAM, and 1 $/MB disc.  These approximate 1994 
prices.   

 
 

Table 1: Two large database machines of 1994, each costing 1.6M$. 
 

 MANY-SMALL PROCESSORS (100) FEW-BIG PROCESSORS (10) 
 CPUS + MEMORY     DISCS CPUS + MEMORY DISCS       
number: 100 X (30 MIPS+100 MB) 1000 X (1 GB/disk) 10 X (300 MIPS+1 GB) 1000 X (1 GB/disk) 
sum 3 BIPS +10 GB 1 TB 3 BIPS + 10 GB 1 TB 
price 100 x  (3 k$ + 3 k$) 1000x 1k$ 10 x  (30 k$ + 30 k$) 1000 x 1 k$ 
sum price:           600 k$ 1 M$ 600 k$ 1 M$ 
total price 1.6M$ 1.6M$ 

        

 
The ideas here apply to both architectures – but to simplify the discussion, the many-small-processors 
design is assumed here.   
 
In this presentation, CPUs are named by the numbers 0, 1,..., 99.  Discs are attached to particular CPUs, 
and are correspondingly named D$ddd where ddd is the disc number [0...999].  For example, disc 223 
is named D$223 and is the third disc of processor 22.   

 

                                                                 
1 The correct processor speed term is SPECint, but that is approximately a MIPS (million instructions per second). 
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30 mips

100MB

Card 0

10 Discs 
10 GB  

 

 

Figure 2. A diagram of a many-small computer 

cluster consisting of 100 "cards" each containing a 

moderately powerful processor equivalent to the PC 

or workstation of 1993.  The "card" includes the 

processor, its communication hardware, its memory 

and a small array of discs.  The cards are inter-

connected by a high speed  interconnect shown as 

the "base-plane".  It gives 1 GB/s point-to-point 

connectivity between any pair of processors. 

 

 

For simplicity,  assume that the data of a table or index is range-partitioned among all the 1000 discs in 
partitions of equal size.   Each system has a slightly different syatax for table partitioning.  To be 
concrete, we use Digital's Rdb syntax [Hobbs]. Partitions are called storage areas in Rdb and are often 
named by the disc on which they reside. Using Rdb syntax, the ACCOUNTS table of the TPC-A 
Benchmark [TPC] on the many-small system would be defined by: 

 create table ACCOUNTS ( ID  unsigned integer not null, 
     BALANCE  decimal(12,2)  not null, 
     CUSTOMER unsigned integer not null, 
     FILLER  character(92)  not null, 
     primary key (ID)     (1) 
     ) 
  create storage map PARTITION for ACCOUNTS store using (ID) 
              in  D$000 with limit of   0999999, 
              in  D$001 with limit of   1999999, 
              in  D$002 with limit of   2999999, 
               ••• 
              in  D$997 with limit of 997999999, 
              in  D$998 with limit of 998999999, 
    otherwise in  D$999; 

When an application selects, inserts, updates, or deletes a record of the ACCOUNTS table, the SQL 
system locates the record in the correct partition.  The application is unaware of the partitioning.   Most 
SQL systems provide a variant of this transparent partitioning.   
 
The computation model is fairly simple.  A sequential record read or insert costs 5,000 instructions and 
a fraction of an IO.  Algorithms here avoid anything but sequential record reads and writes because 
sequential operations can run at disk device speed (5 MB/second or 50,000 records per second), while 
random disk operations run a thousand times slower (50 IO/sec = 50 records/second) due to seek and 
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rotational latencies.  One-way process-to-process messages have a fixed cost of 3K instructions, and a 
marginal cost of one instruction per byte [Uren, Kronenberg, Thekkath].  Some systems cost ten times 
as much for such services.  In any case, the algorithms here minimize sending messages.  If necessary, 
they send a few large messages rather than many small ones.  These computational costs are 
summarized in Table 2. 

 

Table 3: Cost of basic operations: 
 record size 100 bytes 
 sequential SQL record read or insert   5,000 instructions+ 0.01 IO 
 random SQL record read or insert 25,000 instructions  + 1.00 IO 
 disk sequential read/write rate 5 MB/sec= 50,000 records/sec  
 disk random read/write rate 50 IO/sec =       50 records/sec 
 cost of a one-way M-byte message 3 k+ M instructions (speed of light latency is minimal) 
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3. Sequential Database Generation 
The discussion begins by showing how to sequentially generate and populate a table.  This algorithm is 
then generalized to one that generates each partition in parallel.  To make the discussion concrete, the 
following sections take generating the TPC-A ACCOUNTS table as a running example [TPC].  The table 
will have one billion hundred-byte records (.1 TB) partitioned among the 1000 discs as described in the 
data definition Program (1) above.  Each of the one thousand discs will store 100 MB of data as a B-
tree [Knuth].  Since B-trees are only 69% full at equilibrium, each disc will use 150 MB of storage to 
hold it's B-tree.  This is well below the 1 GB capacity of small discs.  The remainder of the disk space 
stores data from other tables. 
 
The ACCOUNTS table above can be sequentially populated by the following simple SQL + C program2 
/* sequentially load records with key in [base,base+count) into tablename  */ 
void sequential_load(  char *tablename, /* name of table to be loaded */ 
     long base,         /* start key of load */ 
     long count)        /* number of keys to load */ 
 { 
 exec sql begin declare section; 
 long key;         (2) 
 exec sql end declare section; 
 for (key = base; key < base + count; key++) 
  exec sql insert into :tablename values(:key, 0, 0, ""); 
 } 

 In fact the entire database for a  10,000 tps-A database [TPC] can be loaded by the following program: 
void sequential_load("accounts", 0, 1000000000);   (3) 
void sequential_load("tellers",  0,     100000); 
void sequential_load("branches", 0,      10000); 

Program (3) shows how to sequentially generate several tables with related statistics: the idea is that the 
branch:teller:account cardinalities should be in the ratios 1:10:100,000, as in the schema:   The entity-
relations ship diagram (4) shows this relationship.  Branch B has the ten tellers: 10B, 10B+1, ...; and has 
the hundred thousand accounts: 100000B, 100000B+1,....  The partitioning of these tables would be 
defined to give each of the thousand discs ten branch records, one hundred teller records, and one 
million account records.  With 1,000 discs, disc i would get branch numbers [i•101..(i+1)•101-1], teller 
numbers  [i•102..(i+1)•102-1] and account numbers  [i•106..(i+1)•106-1].    

   

Branch

Teller Account

1:10 1:100,000

  (4) 

                                                                 
2 A later section will show how to fill in the customer number with a unique and uncorrelated customer ID.   The customer 
number should be unique and uncorrolated with the account number.  Here it is set to zero in all  records.  Also, standard SQL 
does not allow table names to be host variables, but this and later programs assume it is allowed.  One would have to use dyanic 
SQL to get this effect in a standard SQL system. 
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4. Parallel Database Generation 
The ideas in Programs (2) and (3) are fine for loading small tables (less than a million records), but they 
use a single processor and so run one hundred times slower than an algorithm that divides the task into a 
hundred smaller ones each running in parallel on a separate processor.  Program (3) runs at 6,000 
records/second given the performance assumptions of Table 3 (5,000 instructions per insert, 30 MIPS, 
implies 6,000 inserts per second.) At that rate, the billion-record load would take almost two days.  The 
same load could run in twenty minutes if done in parallel on the hundred-processor cluster described by 
Figure 2 and Table 3.   
 
Parallel algorithms require a way to create processes on specific CPUS.  Assume that a process can be 
created in a cpu by calling3: 
 int fork(int  cpu) /* creates a process in the cpu and returns it's id  */ 

The fork procedure is much like the UNIX fork() [Tanenbaum] but has a parameter specifying the 
cpu in which the process is to be created.  As with UNIX, the fork returns zero to the child process, 
but returns the process identifier to the parent (forking) process.  The child is a clone of the parent, 
executing the same program with the same current state, but a completely separate process 
environment. 
  
 Program (4) below shows how to convert the sequential load of Program (2) above to a parallel 
loader.  A parallel loader proceeds by spawning a load process in each processor.  The spawning time 
is minimized by forking a binary tree of processes,  forking 2n processes at depth  n of the tree.  Each 
node follows the logic:  
 (1) If I am not a leaf, fork my left child and right child.  
 (2) Load my partition. 
Figure 4 illustrates the idea.  The logic is designed for a cluster of 2N nodes, but it works on smaller 
clusters of M nodes.  If each fork takes about one second (a high estimate), the entire startup of one 
hundred processes will complete within eight seconds.  Assuming the forking logic copies code and data 
from the forker, there will be no bottlenecks at startup. 

 

7
3 11

91 5 13

0 2 4 6 8 10 12 14
 

Figure 4. The process forking logic for a 

cluster of 15 processors.  cpu 7 forks loaders 

into cpus 3 and 11, then cpu 7 proceeds to load 

partition 7.   

                                                                 
3 What is really needed is more akin to Unix exec than to fork, and has many more parameters. 
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The pseudocode for parallel load is:  
  
#define CPUS 100        (5) 
/* parallel load records into tablename    */ 
/* first fork right and left child processes if right != left  */ 
/* then sequentially load the partitions of this cpu       */ 
void parallel_load(char * tablename, /* name of table to be loaded   */ 
     long records, /* number of records to load  */ 
     long left, /* cpu of left fork subtree  */ 
     long right, /* cpu of right fork subtree   */ 
     integer depth);/* recursion depth in forking  */ 
 { long my_cpu    = floor((left+right)/2); 
 long part_size = floor(records/CPUS); /* 
 long him;     /* id of forked process */ 
 depth++;     /* increase recursion depth */ 
 if ( depth == 1 )    /* return after forking root process */ 
  { if  ( fork(my_cpu))  return; }; /* in center cpu. */ 
 /* spawn left subtree of processes    */ 
 if ( left < my_cpu ) 
  { him = fork( floor( (left + my_cpu-1) / 2) );  
    if (him == 0)  /* child code    */ 
     {parallel_load(tablename, records,left,my_cpu-1,depth); return; } 
  } 
 /* spawn right subtree of processes    */ 
 if ( my_cpu < right )  
  { him = fork( floor( (my_cpu + 1 + right) / 2) );  
    if (him == 0)   /* child code    */ 
     { parallel_load(tablename, records,my_cpu+1,right,depth); return; } 
  } 
 /* fill the partition of this process    */ 
 sequential_load(tablename, my_cpu * part_size, part_size); 
 };      /* end of parallel_load() */ 
/* invoke parallel loader for a billion account records on 100 cpus */ 
void = parallel_load("accounts", 1000000000, 0, CPUS - 1, 0); 

  

This code is easily modified to fork a process-per-disc rather than a process-per-processor if the discs 
are the bottleneck.  Notice that each generator process uses the same table name to generate the data 
(transparency).  The table partitioning criterion causes the records all to go to each loading process's 
local disc.    
 
Parallelism often suffers from problems of startup, interference, and skew [Gerber, Smith].   Program 
(5) minimizes startup problems by parallel forking.  Once the load process begins, the underlying system 
acquires locks on partitions rather than on whole tables – at least that is the way many SQL systems 
work.  So, each partition loader can proceed in parallel and in isolation.  The load operation is typically 
not covered by transaction protection, so the recovery log is not a bottleneck-- rather it uses the old-
master-new-master recovery technique of dumping a copy of the table when the load completes.   
Given these arguments, startup, interference, and skew should not be a problem for the parallel load.  
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Using the assumptions of Figure 2 and Table 3, the algorithm should generate 600,00 records per 
second (60 MB/s) and generate1B records in less than 30 minutes. 
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5.  Dense Unique Random Data Generation 
The parallel data generator of the previous section correctly generated the sequential account numbers 
but it did not generate the customer numbers – it just left them as zeros.  Customer number is an 
example of a general problem.  Generating synthetic databases often requires a sequence of numbers 
(i.e. field values) with the following properties: 
 Dense: All the integers in [0..N] appear in the sequence. 
 Unique: Each integer appears exactly once. 
 Random: The sequence appears to be "random" (is pseudo-random). 
These properties are often needed to make the cardinalities of selection expressions and join 
expressions predictable – for example each customer should have exactly one account.  Some 
applications need synthetic data that is not uniformly distributed.  Section 8 gives some ways to 
transform uniform distributions into Gaussian, exponential, Zipfian, and other distributions. 
 
We know of several ways to generate dense-unique-random numbers in the range [1..N].   The original 
generator for the Wisconsin Benchmark [Bitton 1] kept an initially zero bitmap of length N and used the 
system random number generator to pick the next free element for the series.  This algorithm was 
replaced in the original ASAP generator [Bitton 3] by a shuffle that built an array of pairs < (i, 
random()) | i=1,... , N >.   The array was then sorted on the second element to produce a shuffle of the 
first element. 
 
The bit filter algorithm uses order N space and order N2 time (about N tries are required to set the last 
bit in the bitmap).  The shuffle algorithm takes NlogN time and linear space, so is clearly superior to the 
bit filter.  If space is not an issue, shuffle is a good way to generate a dense-unique random series.  But 
for large databases or if several independent series are to be generated a more space-efficient algorithm 
may be needed.  The obvious choice is to generalize the shuffle to a sort:  
 
Sort: Create a SQL table of two columns containing the dense sequence 1..N and a random sequence 
based on a popular random number generator.  Then the dense sequence is ordered by the random 
sequence.  Program (7) demonstrates this. 
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 exec sql create table T (sequence integer, rand integer); /* create temp table */ 
 for (i =  1;  i <= N; i++)      /* fill it with pairs  */ 
  exec sql insert into T values (:i, :random()); /*  */ 
  /* note that sequence values are dense and unique.                   */ 
    /* If ordered by the rand field,  they will be random.  */ 
 
 exec sql declare cursor answer for   /* define a sql cursor to  */  
  select sequence from T order by rand;  /* get data in the random order */ 
 
 exec sql open answer;    /* read the table via that cursor */ 
 for (i = 0; i < N; i++)    /* set next_value from  */ 
  { exec sql fetch answer into :next_value;/* next record */  
  /* process next value      */ 
  }      /*   */ 
 exec sql close answer;    /*  */ 

 

This algorithm takes NlogN time and ~ N   main memory space (sorting) and ~N disc space (storage of 
table).  For a billion records, the many-little configuration can do the sort in about thirty minutes and the 
job in less than an hour. 
   
Such schemes are somewhat inconvenient because they construct a set of files to drive data generation.  
It would be more convenient to have a simple subroutine that could generate the next element of the 
desired sequence in constant time and space (say 25 instructions and 100 bytes of storage).   The idea 
for such an algorithm is to generate the numbers using a generator of the cyclic group of integers under 
multiplication.  In essence, a random number generator is constructed for elements in the desired range. 
The algorithm is: 
    Pick a prime P larger than N and a generator G for the multiplicative group modulo P.  Then the series 
is:  
 <Gi mod P |  i = 1,...,P    and   (Gi mod P) =  N>  
and the program to generate the series is: 
 
#define P xxx;      /* see Table 5 for good values */ (8) 
#define G xxx;      /* see appendix 1 for good values  */ 
static   seed = G;     /* start the seed at G */ 
long next_value(long N)     /* function to compute next value */ 
 { seed = (G * seed) % P ;    /* seed = next in series mod prime */ 
 while ( seed > N ) seed = (G * seed) % P;    /* 
discard all > N */ 
 return seed;     /* return new value */ 
 }       /* end of generator */ 

This scheme, due to Gray and Englert, was successfully used to generate very large "Wisconsin 
Benchmark" databases on the Intel Hypercube and is now the standard way to generate Wisconsin 
databases [DeWitt 2].  To understand how it works, consider the numbers between 1 and 10.  The 
powers of 8 mod 11 form a dense unique sequence of these numbers: 8, 9, 6, 4, 10, 3, 2, 5, 7, 1.  In 
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general, if N is a prime the multiplicative group  consisting of [1..N-1] has many generators: elements 
whose powers enumerate the group without repetition until they generate 1.    
 
Clearly, the generator scheme is preferable – it takes constant time and constant space.   But not just 
any generator will give a good pseudo-random sequence. There are many tests for "randomness". We 
used the spectral test recommend by Knuth [Knuth].  In his terminology, all the random number 
generators in this paper pass the spectral test "with flying colors" in dimensions 2 through 6.  We applied 
the test to primes just larger than powers of ten and recommend the generators of Table 5.  Section 7 
describes how to use powers of 2 instead of primes.   

 
Table 5. A list of recommended primes and generators for each decade from 10 to one billion.  

 Decade Prime Generator 
 10 11 2 
 100 101 7 
 1,000 1,009 26 
 10,000 10,007 59 
 100,000 100,003 242 
 1,000,000 1,000,003 568 
 10,000,000 10,000,019 1792 
 100,000,000 100,000,007 5649   
 1,000,000,000 2,147,483,647 16807   

 

When the prime and generator are large compared to the machine's arithmetic, one needs to use a 
technique shown in Program (9) due to Schrage [Schrage] to keep the results from overflowing.  P and 
G must be chosen so that B is less than A.   This will always be true if G < P .  Machines with 64-bit 
registers and arithmatic make this technique unnecessary. 

   
#define P xxx;      /* see Table 3 for good values */ (9) 
#define G xxx;      /* of prime and generator */ 
#define  A (P / G);                     /* A = prime / generator */ 
#define  B (P % G);             /* B = prime mod generator */ 
static   seed = G;     /* start the seed at G */ 
long next_value(long N)     /* function to compute next value */ 
 { long  seed_over_A = seed / A;  /* compute the components of seed */ 
 long  seed_mod_A  = seed % A;  /* compared to A = (P/G) */ 
 do       /* loop if next is bigger than N */ 
   {       /* Use Schrage's function to  */ 
   seed = (G * seed_mod_A ) - (B * seed_over_A) ; /* compute G*seed mode P */ 
   if ( seed < 0) seed = seed + P;  /*             without overflow */ 
   } while ( seed >= N )    /* discard all >= N */ 
 return seed;     /* return new value */ 
 }       /* end of next_value() */ 
 
 



  Quickly Generating Billion-Record Synthetic Databases  

    12 

6. Generating Random Data 
The ideas of the previous section can now be applied to generate a complete table.  Program (3) above 
gave an example of generating several tables with related statistics: the idea there was that the 
branch:teller:account cardinalities should be in the ratios 1:10:100,000, as in the schema (4).  This is a 
general phenomenon, but the requirements are often more complex.    One requirement that was 
skipped in Program (2) was that the customer id field be unique and be uncorrelated with the account id 
– rather it was just filled with zeros. The requirement is that each customer have a unique bank account 
as shown in (9).  
 

 

Branch

Teller Account

1:10 1:100,000

Customer1:1
 (9) 

 Using the ideas of the pervious section, Program (2) can be refined to generate each partition of the 
account table in parallel, including the random-unique-dense customer number as follows: 

 
/* sequentially load records into i'th partition of tablename  */ 
void sequential_load( char *tablename,  /* name of table to be loaded    */ 
     long records,      /* number of records in table  */ 
     long count,      /* # records in each partition */ 
     long part_no)       /* number of partition to load  */ 
 {       /*  */ 
 long i, j;     /* loop control variables */ 
 long base = part_no * count;   /* start key for this partition */ 
 long parts = records / count;    /* number of partitions in file */ 
 exec sql begin declare section;   /* SQL variables */  
 long key, customer;    /* account id, customer id */ (10) 
 exec sql end declare section;   /*  */ 
 for (i = 0; i < part_no; i++)    /* the i'th processor skips to */ 
  customer = next_value(records);   /* p(i) in generator's sequence   */  
 for (key = base; key < base + count; key++) /* now generate the partition */ 
  {customer = next_value(records) - 1; /* get next customer number */ 
  exec sql insert into :tablename  ( id, balance, customer, filler) /* */ 
     values(:key, 0,:customer,  "");/*generate 1/n'th */ 
  for (j = 0; j < CPUS; j++)   /* skip seed to p(i+CPU)   */ 
   customer = next_value(records);    /* i.e.  skip p(j) of others */ 
 } }      /* end of sequential_load()     */ 

The generator of the i'th cpu is invoked as: 

 void sequential_load("accounts", records, records/CPUS, i); 

Each of the one hundred processors will compute the same random series based on the 
next_value(records) procedure.  But each generator will only use one hundredth of the series.  If 
the series is s0,  s1,  s2,....,s999999999, the i'th cpu will use the subsequence si,  s1cpus+i,  s2cpus+i, 
s3cpus+i, s4cpus+i,...  Each of these subsequences is random and unique, and the union of them is dense.  

The i'th generator begins by calling next_value() "i-1" times to skip over the values of the other 
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generators. Then after inserting a record, the generator calls the next_value() CPUS times, but only 
uses the last value returned. There is a lot of wasted work in this design: the series is computed one 
hundred times and each generator only uses 1% of the values it generates.  The premise is that calls to 
next_value() are cheap (~25 instructions) so that 100 calls (2500 instructions) is small compared to 
the insert cost (~5000 instructions).     The generator should produce 1B records in less than 1 hour on 
the many-small configuration.   
 
Scaling  this algorithm to thousands of generators requires a variation that has less wasted work.   One 
might partition  the series into 1000 segments and precompute the starting point pi for each partition.  
These values could be stored in a global array.  Then each partition generator would start at sx, for 
some x, and would use the sequence sx,  sx+1,  sx+2,... and no calls to next_value() would be 

wasted. 
 
A different approach avoids this pre-computation and minimizes wasted computation.   Table 5 shows 
that for large N,  P can be chosen just slightly larger than N  (within 1% of it).  Suppose we generate a 
database of P-1 elements rather than N elements.  In that case, no members of the series <Gi mod P | i  
= 0,...,P >  would be discarded.    In turn this means that each partition can compute its next element by 
multiplying the previous element by GCPUSmod P .   Let n = ? N/CPUS? and assign the following series 
to the j'th partition for j = 0,...,CPUS -  1: 
 <GCPUS•i+j mod P | i  = 0,...,n-1>  
This series is very easy for partition j to compute.   First it computes the first element A ?  Gj mod P and 
then B ?  GCPUSmod P .  These two numbers can be computed in ln(CPUS) multiplies and divides.   Then 
the j'th partition uses the series: 
 <(A • Bi) mod P | i = 0,...,n -1>. 
In this approach, there is no need to precompute a partition table and there are no wasted calls to 
next_value().  If we accept this relaxed definition of partitions (the last partition may be slightly larger 
than the others and some elements may be a little larger than N), then it will turn out that computing 
indices is much easier  
 
These techniques can easily  generate tables with 1:N relationships.  Suppose, as in (9), the BRANCHES 
table is to have 1,000 records and the TELLERS table is to have 10,000 records.  If, P is chosen as 
1,009 and G is chosen as 229 (as Table 5 recommends), then BRANCHES can be generated as in 
Program (10).  By using the same prime and generator for the BRANCH field of the 10,000 record 
TELLERS table, the TELLERS table will have exactly 10 tellers for each branch identifier.  More generally, 
each record in one table will match the value of M records in the second table if the second table has M 
times as many records, and the "join-fields" of the two records use the small-table generator.  
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7. Generating Indices on Random Data 
All the programs so far have carefully (but implicitly) generated data in primary key order, the next 
generated record is placed right after the previous record in the B-tree or other clustering mechanism. 
This means that the programs have generated the data in sequential order and so that disc IO time has 
not been an issue.  Modern discs can absorb data at 5 MB/s – with the possibility of much higher data 
rates if striping is used [Kim].  Assuminmg 100 byte records, this is 50,000 records per second.  If each 
generated record went to a random disk page, data rates would drop by a factor of 1000 to 50 records 
per second since each record would cause a seek, rotate, a read transfer and then a rotate and a write 
transfer.  On 1993 discs, each random disk IO consumes about 20ms of disc time and the rate is at 
most 50 IO/s.  So, it is essential that records be generated in sequential order unless the entire table 
can fit in main memory.    
 
Program (10) generates the ACCOUNT table in ACCOUNT.ID order; but it generates the 
ACCOUNT.CUSTOMER field in random order.  Applications often need an index on such random fields.  
For example, an ACCOUNT.CUSTOMER index would allow quick lookup of a customer's ACCOUNT given 
the customer number.  Such an index is defined in SQL by4: 

 create unique index account_customer on account (customer); 

The index is actually a table with the schema: 
 create table account_customer ( customer unsigned integer not null, 
      id  unsigned integer not null,  (12) 
      primary key (customer), 
      foreign key (id) references account(id) 
      ); 

If (i,j) is a record in the account_customer  index then; 
 i is the j'th value returned by next_value(records)  
or using G and P as defined in (8): 
 i  ?  Gj  mod P.  

More formally, j is the discrete logarithm of i  [Coppersmith].   
 
How can this index be generated in parallel with linear speedup and scaleup?  One could compute the 
discrete logarithm, but [Coppersmith] indicates that each computation would be millions of instructions.  
Three schemes can be used: 

                                                                 
4 As usual, we assume this table (index) is uniformly partitioned among the 1000 discs.  The definitions of the 
partitions are omitted here for simplicity. 
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(1) Scan-and-sort: Read the base table in parallel, projecting out the two desired fields, and parallel 
sort the result into the target index.  In SQL this would be expressed as:  

  insert into account_customer  
    select customer, id  
    from account 
    order by customer; 

(2) Generate-and-sort: In each processor, generate the index data to be stored by that processor's 
disks, sort it, and then insert it into the local index partitions.  

(3) Compute: Compute the discrete logarithm quickly and generate the index in the same way one 
generates the base table.   

 
The index is one billion records of eight bytes each, 8 GB in all.  So, each of the 100 processors must 
deal with an 80 MB partition of the index.  This will just fit in each processor's 100 MB memory.   The 
scan-and-sort approach (scheme 1 above), the processors can generate the index data in parallel to the 
data generation, sending index records to the appropriate partitions (cpus) as the base table is generated 
locally.   The receiving processors can sort the indices locally in their memory as the data arrives or is 
generated.   This is a credible and scaleable technique, needing about 10 MB/s network bandwidth to 
move the 8 GB from source to destination for a one-hour job.  But the technique is memory intensive, 
just barely fitting in the processor memories.  If the table keys were larger of if there were more indices, 
then the scan-and-sort technique would require a disk-based sort.  
 
Scheme 2 is a more cpu-intensive sorting scheme - but uses no network messages.  Each processor 
generates the entire base-table sequence, and extracts the index subsequence that applies to the local 
processor.  In particular, if each partition has R index records and if the whole sequence is s1, s2 s3... 

then the i'th processor uses the subsequence: 
   <<sj , j> | iR = sj  ??(i+1)R)>  
These are the index entries for the i'th partition.  They are then sorted on the sj  attribute and inserted 

into the local index partition in sequential order.  The following program shows this cpu-intensive 
enumerate-and-sort algorithm. 
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/* global variables: seed , generator, CPUS, my_cpu  */ 
/* R is records per partition     */ 
void index_load(long records) 
 { long R = records / CPUS;   /* R records per partition */ 
 long my_first_record = my_cpu * R; /* base of index partition */ 
 long i,j = 0, customer;   /* working variables */ 
 exec sql begin declare section;  /*    */ 
 struct { long account;   /* array holding in-memory index to be  */ 
      long customer;   /* sorted on the "random" customer id */ 
    } sorted [R];   /*   */ (13) 
 exec sql end declare section;  /*   */ 
 /* fill in the array with the unsorted values   */ 
 for (i = 0 ;  i < records; i++)  /* for each account number */ 
  { customer = next_value(records); /* get next customer number */ 
  if ( (my_first_record = customer ) &  /* if customer # is in the range  */ 
   (customer < my_first_record + R) ) /* of this partition, use the entry*/ 
   {sorted.account[j] = i; sorted.customer[j] = customer; j++} /* */ 
    };     /* assert: now sorted[i] = G inverse */ 
 /* sort the array on the second attribute (customer)  */ 
 sort(sorted) on sorted.customer;  /* sort the array on customer attribute */ 
 for (j = 0; j < R; j++)    /* copy the array to the index */ 
 exec sql insert into account_index values (:sorted.customer[j] , :sorted.account[j]); 
 }; 

 

The generation step should take 30 instructions per iteration, and there are 1 billion iterations, so it will 
take 1000 seconds on a 30 MIPS computer.   The sort deals with ten million records.  At 30 instructions 
per compare/exchange, an nlog(n) sort will need about 300 seconds.  Once that is complete, the write 
of the data in bulk to the index (at 1000 instructions/insert) should take 300 seconds.  This adds up to 
about thirty minutes.   In summary, indices for large tables can be built in parallel while the base tables 
are being built.  The generator described here can run in parallel with the base table generation if 
sufficient processors and memory are available.                                                                                                                                                              
 
The third index technique involves quickly computing discrete logarithms. That is, given alternate-key 
value k, quickly compute primary key value i such that 
        k  ?  Gi mod P.    (14) 
Solving this problem for arbitrary k when P is a large prime is believed to be quite difficult.   Indeed, this 
is what makes some cryptographic protocols seem secure.  Even for  smaller primes, around a billion, 
each discrete logarithm calculation takes about p  time and space.  The sorting algorithm above would 
be faster. 
 
Picking P as a power of 2, say 2n, allows computing discrete logs in n steps (logP time) and constant 
space.    The following equation is the key to finding the discrete log of k when P is a power of 2: 

 G2i  ?   1 +  2 i +1 (mod 2 i+3). (15) 
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The problem is that the values of the series G, G4, G16,.. , G2i,... are all congruent to 1 mod 4 (all their 
binary representations end in "01").  The solution is to divide the numbers by 4 to get a dense series.    
The following code computes the discrete log of k  (the 2-adic log): 

 
#define   POWER       32  /* the P will be 232 */ 
#define   G           37117  /* Generator for P from Table 6 */ 
static long P      = pow(2,POWER); /* compute P */ 
static long P_MASK = P - 1;  /* mask to avoid mod P division */ 
 
/* do mod P multiplication, in the *4 + 1 space.  The equation is: */ 
/*  ( a * 4 + 1) * ( b * 4 + 1 ) = ( a + b + 4 * a * b ) * 4 + 1 */ (16) 
long mul(long a, long b)  /*    */  
 return ((a + b + 4 * a *b) & P_MASK); /*  */  
 
/* discrete_log(k) returns the discrete log of k with respect to G */ 
/*   At entry                       G^(x) = 1 + 4 * j 
/*   the invariant of the loop is:  G^(x+ans) = 1 + 4 * up */ 
/*      where the last i bits of up are zero  */ 
long  discrete_log(long j)  /*   */ 
 {       /*   */ 
 long up = j,    /* up is j with G^i removed */ 
 long i;     /* index on radix bits of k */ 
 long ans = 0;    /* the target  */ 
 long radix = 1;   /* radix = 2^i in the loop below  */ 
  long Gpow = G;    /* Gpow = G^2i */ 
 for ( i = 1;  i < POWER; i ++) /* for each bit POWER */ 
  { if (up  & radix)  /* if 2^i divides k  */ 
     { ans =  ans + radix; /* equation (15) says add 2^i */ 
     up  = mul( up, Gpow ); }/* preserve loop invariant */ 
  radix = radix * 2;  /* advance radix = 2^i  */ 
  Gpow = mul( Gpow, Gpow ); /* advance Gpow = G^2i */  
  }     /* end of loop */ 
 /* now up = 0 so G^(x+ans) = 1 due to the invariant.  */ 
 /* by Fermat's theorum, x+ans = POWER so discrete log is POWER-ans */ 
 return (POWER - ans);  /*  discrete log of k mod 2^POWER */ 
 }      /* end of discrete_log() */ 
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Table 6 is a catalog of values for POWER and G that have passed the spectral test. 
 

Table 6. Powers of 2 and generators to compute discrete logs. 

Field (max value) POWER  G G-1 

1...28-1 255 10 29 565 

1...29-1 511 11 29 565 

1...210-1 1,023 12 53 541 

1...211-1 2,047 13 53 4637 

1...212-1 4,095 14 117 4061 

1...213-1 8,191 15 125 30,933 

1...214-1 16,383 16 229 48,365 

1...215-1 32,767 17 221 55,157 

1...216-1 65,535 18 469 77,693 

1...217-1 131,071 19 517 31,437 

1...218-1 262,143 20 589 329,349 

1...219-1 524,287 21 861 747,765 

1...220-1 1,048,575 22 1,189 2,638,637 

1...221-1 2,097,151 23 1,653 5,577,181 

1...222-1 4,194,303 24 2,333 12,124,469 

1...223-1 8,388,607 25 3,381 32,611,613 

1...224-1 16,777,215 26 4,629 51,785,021 

1...225-1 33,554,431 27 6,565 32,056,877 

1...226-1 67,108,863 28 9,293 260,289,669 

1...227-1 134,217,727 29 13,093 94,679,213 

1...228-1 268,435,455 30 18,509 561,787,013 

1...229-1 536,870,911 31 26,253 31,247,429 

1...230-1 1,073,741,823 32 37,117 3,730,050,133 

1...231-1 2,147,483,647 33 52,317 766,551,637 

1...232-1 4,294,967,295 34 74,101 6,731,589,341 

1...233-1 8,589,934,591 35 104,581 27,095,900,237 

1...234-1 17,179,869,183 36 147,973 5,486,951,117 

1...235-1 34,359,738,367 37 209,173 46,427,772,477 

1...236-1 68,719,476,735 38 296,029 114,535,788,533 

1...237-1 137,438,953,471 39 418,341 273,639,336,365 

1...238-1 274,877,906,943 40 591,733 411,014,549,725 
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1...239-1 549,755,813,887 41 836,661 1,051,514,334,749 

1...240-1 1,099,511,627,775 42 1,183,221 1,540,143,871,581 

1...241-1 2,199,023,255,551 43 1,673,485 2,064,054,447,557 

1...242-1 4,398,046,511,103 44 2,366,509 6,563,150,205,861 

1...243-1 8,796,093,022,207 45 3,346,853 34,112,825,814,573 

1...244-1 17,592,186,044,415 46 4,732,789 25,355,912,192,221 

1...245-1 35,184,372,088,831 47 6,693,237 80,269,716,416,221 

1...246-1 70,368,744,177,663 48 9,465,541 241,407,036,416,013 

1...247-1 140,737,488,355,327 49 13,386,341 3,774,646,034,285 

1...248-1 281,474,976,710,655 50 18,931,141 787,472,057,538,829 

1...249-1 562,949,953,421,311 51 26,772,693 105,651,650,1967,997 

1...250-1 1,125,899,906,842,620 52 37,862,197 183,937,449,308,9565 

1...251-1 2,251,799,813,685,250 53 53,545,221 1,969,087,082,879,949 

1...252-1 4,503,599,627,370,490 54 75,724,373 11,327,587,540,653,821 

1...253-1 9,007,199,254,740,990 55 107,090,317 6,288,511,001,205,061 
  

The use of numbers near a billion strains the word size of "old" 32-bit computers.   In particular, if P is 
bigger than 216 or so, multiplication modulo P cannot be done without some programming trick.   
Schrage's technique, as shown in program (9), can be used to fit such arithmetic into small words  
[Schrage]. 
 
In summary, indices on synthetically generated data can be built in one of three ways.  Scan-and-sort, 
generate-and-sort, or compute.  The computational method has some restrictions on the size of the table 
and on the generator, but is the most efficient approach for large tables.   The computational approach is 
nicely suited to parallel algorithms. 
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8. Generating Data Having Non Uniform Distributions 
 
Having explained how to generate unique data, now we consider generating other data distributions.  
The examples above all required dense-unique values.   Often, the database needs values obeying some 
common distribution.   The size of cities, lengths of words, and frequency of words is known to follow a 
Zipfian distribution.  Measurement errors often obey a Gaussian  distribution, and the inter-arrival 
intervals of events often follow a Poisson  or negative exponential distribution.    Such domains are easily 
generated by skewing a uniform distribution.  This section catalogs the standard distributions, and adds 
a little to the generation of self-similar and Zipfian distributions. 
 
Program (10) demonstrated the simplest case,  repeating some value a constant number of times in 
another field. It generates ten accounts per branch – repeating each branch number ten times in the 
ACCOUNT.BRANCH domain..   Suppose we wanted a the values of some field or the number of child 
records to follow some more complex distribution.   Then the following code might be appropriate 
 
create table parent ( master integer not null,  
    rest  char(96), 
    primary key (master) 
    ); 
create table child ( master  integer not null, 
    detail  integer not null, 
    rest char(92), 
    primary key (master,detail), 
    foreign key (master) references parent 
    ); 
/* sequentially load records with key in [base,base+count) into tablename  */ 
void sequential_load( char *parent,  /* name of parent table  */ 
      char *child,  /* name of child table  */ 
     long base,         /* start key of load        */ 
     long limit)        /* first key after load     */ 
 {       /*  */ 
 exec sql begin declare section;   /*   */ 
 long master, detail;    /* master and detail key values */ (25) 
 exec sql end declare section;   /*  */ 
 for (master = base; master < base + count; master++)  /* for each master key */ 
  {exec sql insert into :parent values(:master, ""); /* add master rec  */ 
  count = distribution();   /* create that many child recs */ 
  for ( detail = 0; detail < count; detail++ ) /* */ 
   exec sql insert into :child values(:master, :detail, ""); /* */ 
  }      /* end master loop */ 
 }       /* end sequential_load() */ 
 

This code encapsulates the distribution of child cardinalities.   It only remains to describe ways of 
generating the popular distributions.  The following table presents the code to generate the distribution 
on the left and a graph of the distribution on the right.  See [Ripley], [Jain], or [Press] for more details.  
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The programs below assume randf() returns values distributed uniformly in [0..1] and random() 

returns values distributed uniformly in [0..? ] or some approximation thereof (e.g. [0..232]). 

The uniform distribution 
 equation:  f(x) = 1  x ? [0,1] 

 mean: ?  = 0.5 

 standard deviation:  ?  = .5 

 inverse distribution:  
     x= randf() where randf() ? [0,1] 
code: 
double uniform() 
   {return randf();}  

1

?   1
?

 

Negative exponential 

 equation:  f(x) = 
1
?
 e

-?x
   :  x ? [0,8 ]  

 mean:  
1
?
    

 standard deviation:   
1
?
    

 inverse distribution:  ??Error!,?)    

             where  random() ? [0,8] 

code: 
   double neg_exp(double lambda) 
      { return ln(random()) / lambda; } 

 
 

0

1

0 1? 2? 3? 4? 5? 6?  



  Quickly Generating Billion-Record Synthetic Databases  

    22 

Gauss = Normal Distribution:  

equation:  ?(x) = 
1

? 2?
 e

-
1
2?
?

?
?x-?

?
2

   

                                   :   x ? [0,8 ] 

 mean: ?   

 standard deviation:  ?   

 inverse distribution:  

? ? ? ? ?? + 
?
??

1

12

(random()-0.5)     

    where   randf() ? [0,1]   
 deviation is ~.5% see [Ripley, pp 54]  
code: 
double gauss(double mu, sigma) 
  { int i; double ans = 0.0; 
  for (i = 0; i<12; i++) 
    {ans = ans + (randf()) -0.5;} 
  return (mu + ans/6); 
  } 

  
 
 
 
 
 

-3? ? 1? 2? 3? -2?  -1?   

Poisson 

equation:  f(x) =  e
-?

??
?k

k!  :  k = 0, 1, ...  

 mean: ? 

 inverse distribution:  [Ripley, pp 55]. 
code: 
 long poisson(long lambda)  
    { long  n = 0;  
    double c =  pow(e,-lambda); 
    double p = 1.0; 
    while (p >= c)   
      {p = p * randf();   
              n++;} 
     return (n-1); 
    };   

 
 
 

0 1? 2? 3?  
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Self-Similar (80-20 rule) 

Integers between 1...N. 

The first h•N integers get 1-h of the distribution. 

For example: if N = 25 and h= .10, then  

      80% of the weight goes to the first 5 integers. 

      and 64% of the weight goes to the first integer. 

code: 
 long selfsimilar(long n, double h)  
    { return (1 + (int) 
     (N * pow((randf(),log(h)/log(1.0-h)))
             ); 

    };   
1 2 N
h•N

1-h

(h-1)N
 

Zipf's "Law"  

Integers between 1...N. 

Integer k  gets weight proportional to ( 
1
k .) theta 

           where 0 < theta < 1  is the skew 

code: 
long zipf(long n, double theta) 
  { 
  double alpha = 1 / (1 - theta); 
  double zetan = zeta(n, theta); 
  double eta =  
          (1 - pow(2.0 / n, 1 - theta)) /
          (1 - zeta(theta, 2) / zetan); 
  double u = randf(); 
  double uz = u * zetan; 
  if (uz < 1) return 1; 
  if (uz < 1 + pow(0.5, theta)) return 2;
  return 1 +  
   (int)(n * pow(eta*u - eta + 1, alpha));
   }; 
 

 
 
 
 
 
 
 

1 2

5%

3%

.5%

1%

3 5 10 20 30 50 100  

 

The only "new" distribution here is the self-similar one, often used for situations following the 80/20 rule 
or some other highly skewed self-similar distribution.  Self similar distributions have the property that 
within any region of the distribution, the skew is the same as in any other region.  So, for example, all 
subranges of the 80/20 (h=.20) self similar distribution follow  the 80/20 rule.  
 
A set of values of the form 1..k is called a "hot spot" because any of the values in this set has more 
weight (and hence is "hotter") than any value outside the set.  Self-similar distributions are characterized 
by the property that hot spots have a distribution similar the entire range of values.   The Zipf 
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distributions are characterized by the property that the frequency distribution is a straight line when 
plotted on a log-log graph. 
 
If the hot spot is supposed to be randomly spread throughout a range of values, then it is necessary to 
permute the values randomly.  Generating random permutations is discussed elsewhere in this paper.  In 
principle, generating a random permutation and generating  a distribution are independent problems. 
However, hot spot distributions like the self-similar and Zipf distributions can be permuted more easily 
than general distributions. The trick is to assume that the "cold" values are uniformly distributed. This 
greatly simplifies the generation of the permutation since it now just involves choosing the relatively small 
number of "hot" values. This is especially important when it is necessary to perform the computation in 
parallel. The "hot" values can be chosen at one node and broadcast as a table to the rest of the nodes. 
The algorithms above are used to compute an index into the table of "hot" values. If the index is too 
large, then a value is chosen uniformly at random from all possible values (ignoring whether it is already 
in the table of hot values). The index computations can be done independently at each node so long as 
the seeds for the pseudo-random number generator are chosen independently. 
 
The number of hot values that require special treatment depends on how accurately one needs to 
represent the distribution in question. (One should bear in mind that the self-similar and Zipf distributions 
are themselves only approximations to what is observed in actual systems.) As an example, consider a 
self-similar distribution following the 95/5 rule. A table of just 313 out of a billion possible values would 
account for  over 77% of the weight of this distribution. 
 
The program presented here to generate a Zipf distribution uses constants alpha, zetan and eta  
derived from theta and n.  The function zeta returns the sum 
   (1/1)theta + (1/2)theta +...+ (1/n)theta. 
 
The approximation uses the same technique as that in Knuth (volume 3, page 398), but corrects the 
weight assigned to the first two values to get a more accurate approximation. 
 
It is commonly thought that self-similarity and the Zipf distribution are the same, or at least close.   This 
misconception apparently stems from a misleading approximation made in Knuth (volume 3, page 398). 
Knuth's approximation is adequate for the statistic being computed there but should not be construed as 
asserting that the self-similar and Zipf distributions are close in the usual probabilistic sense. In particular, 
other statistics can yield very different results for the self-similar and Zipf distributions. However, 
Knuth's calculation can be modified to produce a reasonable approximation as we noted above. 
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The log-log graph of Zipf's distribution with parameter 0.5 is shown above.  It shows the largest weight 
on 1, the second largest on 2, and so on.  
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9. Summary 
 
This paper first showed how to convert a simple sequential load into a parallel load – turning a two-day 
task into a one-hour task.   It then explored the ways to generate synthetic data.  At first it focused on 
generating the primary keys of records and values uncorrelated to these keys: dense-unique-pseudo-
random sequences.  Then, attention turned to building indices on these synthetic tables – either by 
sorting, or by using discrete logarithms.  By careful selection of generators, the discrete log problem is 
tractable and indices can be quickly generated within the 1-hour limit we set for the billion-record load. 
 
The paper then looked at skewed distributions.  It presented the standard ways to generate uniform, 
exponential, normal, and Poisson distributions.  It went into more detail on the new topic of self-similar 
and Zipfian distributions. 
 
Using these techniques, one can generate billion-record databases in an hour, and a two terabyte 
databases per day.   
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