49


2     Problem
Deadline 10:15 am, 29 March 2012, Submitted as Hard-copy to Dr. Ahmed Rashed

    1. Consider the damped mass spring system shown below

                                                  f (t)

                                                            x (t)
                                             m

                                       k             c (or d )


         • The equation of motion can be written as

                                     m¨(t) + cx(t) + kx(t) = f (t)
                                      x       ˙

         • For free vibration, f (t) = 0 is substituted in the above equation to obtain

                                      m¨(t) + cx(t) + kx(t) = 0
                                       x       ˙

                               k             c                     √
         • By defining ωn ≡           , ξ≡                  & cc ≡ 2 km , the above equation
                               m            cc
           can be divided by m and written as
                                                         2
                                     x(t) + 2ξωn x(t) + ωn x(t) = 0
                                     ¨           ˙

         • The solution of the above differential equation is given to you as
                              
                              A sin (ωn t + θ)
                                                                        ,: ξ = 0
                              
                               −ξωn t
                              B e        sin (ωd t + φ)                 ,: ξ < 1
                      x(t) =     −ωn t
                              e
                                      [x0 + (ωn x0 + v0 ) t]
                                                √               √
                                                                         ,: ξ = 1
                                                   2 −1t          2 −1t
                                         Ce−ωn ξ
                               −ξωn t
                              e                          + Deωn ξ       ,: ξ > 1

           where x0 is the initial displacement, v0 is the initial velocity and the terms ωd ,
           A, B, C, D, θ and φ are as follows

                                           ωd ≡ ωn        1 − ξ2

                                                                    2
                                                            v0
                                           A≡      x2 +
                                                    0
                                                            ωn
                                             x2 ωn + 2ξωn x0 v0 + v0
                                              0
                                                 2                 2
                                     B≡
                                                   ωn     1 − ξ2


                                             26
ξ 2 − 1 − ξ ωn x0 − v0
                              C≡
                                            2ωn     ξ2 − 1
                                       ξ 2 − 1 + ξ ωn x0 + v0
                              D≡
                                            2ωn     ξ2 − 1
                                                    x0 ωn
        × × MISLEADING × × θ ≡ tan−1                         × × MISLEADING × ×
                                                     v0
      and
                                                  x0 ωn 1 − ξ 2
      × × MISLEADING × × φ ≡ tan−1                                × × MISLEADING × ×
                                                   ξωn x0 + v0

(1) Create a Matlab function called “SDOF_response” to calculate x(t) as follows
            function x=SDOF_response(w_n,zeta,x0,v0,t)
      • w_n, zeta, x0 and v0 are scalars
      • t is a vector
      Common mistake
            • Use the “atan2” function for calculating θ and φ
            • “atan2(y,x)” function uses y and x values to determine the correct
              angle quadrant. Hence it returns angles in the closed interval [−π, π]
            • “atan” function on the other hand returns angles in the range [− π , π ]
                                                                                2 2
(2) Print and submit your “SDOF_response.m” file
(3) Study and understand and run the following code
clc

w_n=1;
zeta=[0,.1,.15,.2,.3,.5,1/sqrt(2),1,2];
legend_string={'$zeta = 0$','$zeta = 0.1$','$zeta = 0.15$','$zeta =
0.2$','$zeta = 0.3$','$zeta = 0.5$','$zeta=1/sqrt{2}$','$zeta =
1$','$zeta = 2$'};
x0=-1;
v0=0;

t=linspace(0,4*pi,500);

figure(1);clf
hold all
for n=1:length(zeta)
    x=SDOF_response(w_n,zeta(n),x0,v0,t);
    plot(w_n*t,x,'LineWidth',1.5)
end

grid on
title('x(t) for omega_n = 1, x_0 = -1 and v_0 = 0');
xlabel('omega_n t');
legend();
set(gca,'XTick',0:pi/2:4*pi);
set(gca,'XTickLabel',{'0','','pi','','2pi','','3pi','','4pi'})
set(gca,'XLim',[0,4*pi]);

set(gca,'YTick',-1:.5:1);

legend(legend_string,'interpreter','latex','Location','NorthEastOutside');



                                       27
(4) submit your resulting figure

                         x(t) for ωn = 1, x0 = −1 and v0 = 0
  1
                                                                           ζ=0

                                                                           ζ = 0.1
                                                                           ζ = 0.15
 0.5
                                                                           ζ = 0.2

                                                                           ζ = 0.3

                                                                           ζ = 0.5
  0                                                                              √
                                                                           ζ = 1/ 2
                                                                           ζ=1

                                                                           ζ=2
−0.5




 −1
       0          pi                   2pi                     3pi   4pi
                                       ωn t



(5) Calculate and submit the response, x(t), at the following cases

(a) m = 1, c = 2, k = 3, x0 = 0.4, v0 = 1 and t = 0.5
(b) m = 2, c = 3, k = 4, x0 = 0.4, v0 = −1 and t = 0.5




                                              28

More Related Content

PDF
Ism et chapter_2
PDF
C slides 11
PDF
Markov Tutorial CDC Shanghai 2009
PDF
TABLA DE DERIVADAS
PDF
2D1431 Machine Learning
PDF
Cash Settled Interest Rate Swap Futures
PDF
110218 [아꿈사발표자료] taocp#1 1.2.9. 생성함수
PDF
Beam theory
Ism et chapter_2
C slides 11
Markov Tutorial CDC Shanghai 2009
TABLA DE DERIVADAS
2D1431 Machine Learning
Cash Settled Interest Rate Swap Futures
110218 [아꿈사발표자료] taocp#1 1.2.9. 생성함수
Beam theory

What's hot (18)

PDF
Engr 213 midterm 1b sol 2010
PDF
Assignment6
PDF
Tele3113 wk11wed
DOC
1st 2practice
PDF
Lagrange
PDF
Kinematika rotasi
PDF
Sect1 2
PDF
Signal Processing Course : Fourier
PDF
Cheat Sheet
PDF
Optimal debt maturity management
PDF
Sect2 3
PDF
Engr 213 midterm 1b sol 2009
PDF
Figures
PPT
Jordan's solution
DOC
Ejercicios de ecuaciones diferenciales
PDF
كتيب ملخصات دروس للرياضيات السنة الثانية ثانوي 2
PDF
Formulario de calculo
Engr 213 midterm 1b sol 2010
Assignment6
Tele3113 wk11wed
1st 2practice
Lagrange
Kinematika rotasi
Sect1 2
Signal Processing Course : Fourier
Cheat Sheet
Optimal debt maturity management
Sect2 3
Engr 213 midterm 1b sol 2009
Figures
Jordan's solution
Ejercicios de ecuaciones diferenciales
كتيب ملخصات دروس للرياضيات السنة الثانية ثانوي 2
Formulario de calculo
Ad

Viewers also liked (20)

PDF
20140819 kagosima
PPT
[Japanese]2011 07 15_日本計画研究所
PPT
Demak
ODP
Trabajo de ingles pco
PDF
Google gears for_attackers
PDF
Social media & organisations - A presentation for AmCham Belgium
PPTX
Ppt mikroum fixed
PDF
Газовый напольный котел Печкин КСГ-50
PPTX
Grad project
PDF
企劃書 取彗!
PPTX
Offshore Software Development, Software Testing by CAMO Solutions
PPTX
Busca dins teu
PPT
Center mass team
DOCX
Soal soal
PPTX
Дедигурова
PDF
Fornitura E Finanziamento Di Materiale Per Impianti Fotovoltaici
PPTX
Audience Feedback
PDF
2012 Presentazione Minerva
PPTX
Housing and Finance Presentation
20140819 kagosima
[Japanese]2011 07 15_日本計画研究所
Demak
Trabajo de ingles pco
Google gears for_attackers
Social media & organisations - A presentation for AmCham Belgium
Ppt mikroum fixed
Газовый напольный котел Печкин КСГ-50
Grad project
企劃書 取彗!
Offshore Software Development, Software Testing by CAMO Solutions
Busca dins teu
Center mass team
Soal soal
Дедигурова
Fornitura E Finanziamento Di Materiale Per Impianti Fotovoltaici
Audience Feedback
2012 Presentazione Minerva
Housing and Finance Presentation
Ad

Similar to Sheet1 simplified (20)

PDF
Formulario cuantica 2
PDF
Introduction to inverse problems
DOCX
1 d wave equation
PDF
Emat 213 midterm 2 winter 2006
PDF
Gz3113501354
PDF
Gz3113501354
PDF
Gz3113501354
PDF
Euler lagrange equation
PDF
PDF
Quadratic form and functional optimization
PDF
C Sanchez Reduction Saetas
PDF
Hw2 s
PDF
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
PDF
Engr 213 midterm 2b sol 2010
PDF
Emat 213 midterm 1 fall 2005
PDF
Emat 213 midterm 1 winter 2006
PDF
Cosmological Perturbations and Numerical Simulations
PDF
Engr 213 midterm 2a sol 2010
PDF
Quantum modes - Ion Cotaescu
PDF
The International Journal of Engineering and Science (The IJES)
Formulario cuantica 2
Introduction to inverse problems
1 d wave equation
Emat 213 midterm 2 winter 2006
Gz3113501354
Gz3113501354
Gz3113501354
Euler lagrange equation
Quadratic form and functional optimization
C Sanchez Reduction Saetas
Hw2 s
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
Engr 213 midterm 2b sol 2010
Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 winter 2006
Cosmological Perturbations and Numerical Simulations
Engr 213 midterm 2a sol 2010
Quantum modes - Ion Cotaescu
The International Journal of Engineering and Science (The IJES)

Recently uploaded (20)

DOCX
Basics of Cloud Computing - Cloud Ecosystem
PDF
Data Virtualization in Action: Scaling APIs and Apps with FME
PPTX
Build automations faster and more reliably with UiPath ScreenPlay
PDF
Transform-Quality-Engineering-with-AI-A-60-Day-Blueprint-for-Digital-Success.pdf
PDF
Connector Corner: Transform Unstructured Documents with Agentic Automation
PDF
EIS-Webinar-Regulated-Industries-2025-08.pdf
PDF
Build Real-Time ML Apps with Python, Feast & NoSQL
PDF
A hybrid framework for wild animal classification using fine-tuned DenseNet12...
PDF
ment.tech-Siri Delay Opens AI Startup Opportunity in 2025.pdf
PPTX
SGT Report The Beast Plan and Cyberphysical Systems of Control
PDF
Introduction to MCP and A2A Protocols: Enabling Agent Communication
PPTX
AI-driven Assurance Across Your End-to-end Network With ThousandEyes
PDF
Dell Pro Micro: Speed customer interactions, patient processing, and learning...
PDF
Lung cancer patients survival prediction using outlier detection and optimize...
PDF
4 layer Arch & Reference Arch of IoT.pdf
PDF
Transform-Your-Streaming-Platform-with-AI-Driven-Quality-Engineering.pdf
PDF
Aug23rd - Mulesoft Community Workshop - Hyd, India.pdf
PDF
zbrain.ai-Scope Key Metrics Configuration and Best Practices.pdf
PDF
Auditboard EB SOX Playbook 2023 edition.
PPTX
Internet of Everything -Basic concepts details
Basics of Cloud Computing - Cloud Ecosystem
Data Virtualization in Action: Scaling APIs and Apps with FME
Build automations faster and more reliably with UiPath ScreenPlay
Transform-Quality-Engineering-with-AI-A-60-Day-Blueprint-for-Digital-Success.pdf
Connector Corner: Transform Unstructured Documents with Agentic Automation
EIS-Webinar-Regulated-Industries-2025-08.pdf
Build Real-Time ML Apps with Python, Feast & NoSQL
A hybrid framework for wild animal classification using fine-tuned DenseNet12...
ment.tech-Siri Delay Opens AI Startup Opportunity in 2025.pdf
SGT Report The Beast Plan and Cyberphysical Systems of Control
Introduction to MCP and A2A Protocols: Enabling Agent Communication
AI-driven Assurance Across Your End-to-end Network With ThousandEyes
Dell Pro Micro: Speed customer interactions, patient processing, and learning...
Lung cancer patients survival prediction using outlier detection and optimize...
4 layer Arch & Reference Arch of IoT.pdf
Transform-Your-Streaming-Platform-with-AI-Driven-Quality-Engineering.pdf
Aug23rd - Mulesoft Community Workshop - Hyd, India.pdf
zbrain.ai-Scope Key Metrics Configuration and Best Practices.pdf
Auditboard EB SOX Playbook 2023 edition.
Internet of Everything -Basic concepts details

Sheet1 simplified

  • 1. 49 2 Problem Deadline 10:15 am, 29 March 2012, Submitted as Hard-copy to Dr. Ahmed Rashed 1. Consider the damped mass spring system shown below f (t) x (t) m k c (or d ) • The equation of motion can be written as m¨(t) + cx(t) + kx(t) = f (t) x ˙ • For free vibration, f (t) = 0 is substituted in the above equation to obtain m¨(t) + cx(t) + kx(t) = 0 x ˙ k c √ • By defining ωn ≡ , ξ≡ & cc ≡ 2 km , the above equation m cc can be divided by m and written as 2 x(t) + 2ξωn x(t) + ωn x(t) = 0 ¨ ˙ • The solution of the above differential equation is given to you as  A sin (ωn t + θ)  ,: ξ = 0   −ξωn t B e sin (ωd t + φ) ,: ξ < 1 x(t) = −ωn t e  [x0 + (ωn x0 + v0 ) t] √ √ ,: ξ = 1  2 −1t 2 −1t Ce−ωn ξ  −ξωn t e + Deωn ξ ,: ξ > 1 where x0 is the initial displacement, v0 is the initial velocity and the terms ωd , A, B, C, D, θ and φ are as follows ωd ≡ ωn 1 − ξ2 2 v0 A≡ x2 + 0 ωn x2 ωn + 2ξωn x0 v0 + v0 0 2 2 B≡ ωn 1 − ξ2 26
  • 2. ξ 2 − 1 − ξ ωn x0 − v0 C≡ 2ωn ξ2 − 1 ξ 2 − 1 + ξ ωn x0 + v0 D≡ 2ωn ξ2 − 1 x0 ωn × × MISLEADING × × θ ≡ tan−1 × × MISLEADING × × v0 and x0 ωn 1 − ξ 2 × × MISLEADING × × φ ≡ tan−1 × × MISLEADING × × ξωn x0 + v0 (1) Create a Matlab function called “SDOF_response” to calculate x(t) as follows function x=SDOF_response(w_n,zeta,x0,v0,t) • w_n, zeta, x0 and v0 are scalars • t is a vector Common mistake • Use the “atan2” function for calculating θ and φ • “atan2(y,x)” function uses y and x values to determine the correct angle quadrant. Hence it returns angles in the closed interval [−π, π] • “atan” function on the other hand returns angles in the range [− π , π ] 2 2 (2) Print and submit your “SDOF_response.m” file (3) Study and understand and run the following code clc w_n=1; zeta=[0,.1,.15,.2,.3,.5,1/sqrt(2),1,2]; legend_string={'$zeta = 0$','$zeta = 0.1$','$zeta = 0.15$','$zeta = 0.2$','$zeta = 0.3$','$zeta = 0.5$','$zeta=1/sqrt{2}$','$zeta = 1$','$zeta = 2$'}; x0=-1; v0=0; t=linspace(0,4*pi,500); figure(1);clf hold all for n=1:length(zeta) x=SDOF_response(w_n,zeta(n),x0,v0,t); plot(w_n*t,x,'LineWidth',1.5) end grid on title('x(t) for omega_n = 1, x_0 = -1 and v_0 = 0'); xlabel('omega_n t'); legend(); set(gca,'XTick',0:pi/2:4*pi); set(gca,'XTickLabel',{'0','','pi','','2pi','','3pi','','4pi'}) set(gca,'XLim',[0,4*pi]); set(gca,'YTick',-1:.5:1); legend(legend_string,'interpreter','latex','Location','NorthEastOutside'); 27
  • 3. (4) submit your resulting figure x(t) for ωn = 1, x0 = −1 and v0 = 0 1 ζ=0 ζ = 0.1 ζ = 0.15 0.5 ζ = 0.2 ζ = 0.3 ζ = 0.5 0 √ ζ = 1/ 2 ζ=1 ζ=2 −0.5 −1 0 pi 2pi 3pi 4pi ωn t (5) Calculate and submit the response, x(t), at the following cases (a) m = 1, c = 2, k = 3, x0 = 0.4, v0 = 1 and t = 0.5 (b) m = 2, c = 3, k = 4, x0 = 0.4, v0 = −1 and t = 0.5 28