Building Streaming Applications with
Apache Apex
Chinmay Kolhatkar, Committer @ApacheApex, Engineer @DataTorrent
Thomas Weise, PMC Chair @ApacheApex, Architect @DataTorrent
Nov 15th
2016
Agenda
2
• Application Development Model
• Creating Apex Application - Project Structure
• Apex APIs
• Configuration Example
• Operator APIs
• Overview of Operator Library
• Frequently used Connectors
• Stateful Transformation & Windowing
• Scalability - Partitioning
• End-to-end Exactly Once
Application Development Model
3
▪Stream is a sequence of data tuples
▪Operator takes one or more input streams, performs computations & emits one or more output streams
• Each Operator is YOUR custom business logic in java, or built-in operator from our open source library
• Operator has many instances that run in parallel and each instance is single-threaded
▪Directed Acyclic Graph (DAG) is made up of operators and streams
Directed Acyclic Graph (DAG)
Filtered
Stream
Output
Stream
Tuple Tuple
FilteredStream
Enriched
Stream
Enriched
Stream
er
Operator
er
Operator
er
Operator
er
Operator
er
Operator
er
Operator
Creating Apex Application Project
4
chinmay@chinmay-VirtualBox:~/src$ mvn archetype:generate -DarchetypeGroupId=org.apache.apex
-DarchetypeArtifactId=apex-app-archetype -DarchetypeVersion=LATEST -DgroupId=com.example
-Dpackage=com.example.myapexapp -DartifactId=myapexapp -Dversion=1.0-SNAPSHOT
…
…
...
Confirm properties configuration:
groupId: com.example
artifactId: myapexapp
version: 1.0-SNAPSHOT
package: com.example.myapexapp
archetypeVersion: LATEST
Y: : Y
…
…
...
[INFO] project created from Archetype in dir: /media/sf_workspace/src/myapexapp
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 13.141 s
[INFO] Finished at: 2016-11-15T14:06:56+05:30
[INFO] Final Memory: 18M/216M
[INFO] ------------------------------------------------------------------------
chinmay@chinmay-VirtualBox:~/src$
https://www.youtube.com/watch?v=z-eeh-tjQrc
Apex Application Project Structure
5
• pom.xml
• Defines project structure and
dependencies
• Application.java
• Defines the DAG
• RandomNumberGenerator.java
• Sample Operator
• properties.xml
• Contains operator and application
properties and attributes
• ApplicationTest.java
• Sample test to test application in local
mode
Apex APIs: Compositional (Low level)
6
Input Parser Counter Output
CountsWordsLines
Kafka Database
Filter
Filtered
Apex APIs: Declarative (High Level)
7
File
Input
Parser
Word
Counter
Console
Output
CountsWordsLines
Folder StdOut
StreamFactory.fromFolder("/tmp")
.flatMap(input -> Arrays.asList(input.split(" ")), name("Words"))
.window(new WindowOption.GlobalWindow(),
new TriggerOption().accumulatingFiredPanes().withEarlyFiringsAtEvery(1))
.countByKey(input -> new Tuple.PlainTuple<>(new KeyValPair<>(input, 1L)), name("countByKey"))
.map(input -> input.getValue(), name("Counts"))
.print(name("Console"))
.populateDag(dag);
Apex APIs: SQL
8
Kafka
Input
CSV
Parser
Filter CSV
Formattter
FilteredWordsLines
Kafka File
Project
Projected
Line
Writer
Formatted
SQLExecEnvironment.getEnvironment()
.registerTable("ORDERS",
new KafkaEndpoint(conf.get("broker"), conf.get("topic"),
new CSVMessageFormat(conf.get("schemaInDef"))))
.registerTable("SALES",
new FileEndpoint(conf.get("destFolder"), conf.get("destFileName"),
new CSVMessageFormat(conf.get("schemaOutDef"))))
.registerFunction("APEXCONCAT", this.getClass(), "apex_concat_str")
.executeSQL(dag,
"INSERT INTO SALES " +
"SELECT STREAM ROWTIME, FLOOR(ROWTIME TO DAY), APEXCONCAT('OILPAINT', SUBSTRING(PRODUCT, 6, 7) " +
"FROM ORDERS WHERE ID > 3 AND PRODUCT LIKE 'paint%'");
Apex APIs: Beam
9
• Apex Runner of Beam is available!!
• Build once run-anywhere model
• Beam Streaming applications can be run on apex runner:
public static void main(String[] args) {
Options options = PipelineOptionsFactory.fromArgs(args).withValidation().as(Options.class);
// Run with Apex runner
options.setRunner(ApexRunner.class);
Pipeline p = Pipeline.create(options);
p.apply("ReadLines", TextIO.Read.from(options.getInput()))
.apply(new CountWords())
.apply(MapElements.via(new FormatAsTextFn()))
.apply("WriteCounts", TextIO.Write.to(options.getOutput()));
.run().waitUntilFinish();
}
Apex APIs: SAMOA
10
• Build once run-anywhere model for online machine learning algorithms
• Any machine learning algorithm present in SAMOA can be run directly on Apex.
• Uses Apex Iteration Support
• Following example does classification of input data from HDFS using VHT algorithm on
Apex:
$ bin/samoa apex ../SAMOA-Apex-0.4.0-incubating-SNAPSHOT.jar "PrequentialEvaluation
-d /tmp/dump.csv
-l (classifiers.trees.VerticalHoeffdingTree -p 1)
-s (org.apache.samoa.streams.ArffFileStream
-s HDFSFileStreamSource
-f /tmp/user/input/covtypeNorm.arff)"
Configuration (properties.xml)
11
Input Parser Counter Output
CountsWordsLines
Kafka Database
Filter
Filtered
Streaming Window
Processing Time Window
12
• Finite time sliced windows based on processing (event arrival) time
• Used for bookkeeping of streaming application
• Derived Windows are: Checkpoint Windows, Committed Windows
Operator APIs
13
Next
streaming
window
Next
streaming
window
Input Adapters - Starting of the pipeline. Interacts with external system to generate stream
Generic Operators - Processing part of pipeline
Output Adapters - Last operator in pipeline. Interacts with external system to finalize the processed stream
OutputPort::emit()
Overview of Operator Library (Malhar)
14
RDBMS
• JDBC
• MySQL
• Oracle
• MemSQL
NoSQL
• Cassandra, HBase
• Aerospike, Accumulo
• Couchbase/ CouchDB
• Redis, MongoDB
• Geode
Messaging
• Kafka
• JMS (ActiveMQ etc.)
• Kinesis, SQS
• Flume, NiFi
File Systems
• HDFS/ Hive
• Local File
• S3
Parsers
• XML
• JSON
• CSV
• Avro
• Parquet
Transformations
• Filters, Expression, Enrich
• Windowing, Aggregation
• Join
• Dedup
Analytics
• Dimensional Aggregations
(with state management for
historical data + query)
Protocols
• HTTP
• FTP
• WebSocket
• MQTT
• SMTP
Other
• Elastic Search
• Script (JavaScript, Python, R)
• Solr
• Twitter
Frequently used Connectors
Kafka Input
15
KafkaSinglePortInputOperator KafkaSinglePortByteArrayInputOperator
Library malhar-contrib malhar-kafka
Kafka Consumer 0.8 0.9
Emit Type byte[] byte[]
Fault-Tolerance At Least Once, Exactly Once At Least Once, Exactly Once
Scalability Static and Dynamic (with Kafka
metadata)
Static and Dynamic (with Kafka metadata)
Multi-Cluster/Topic Yes Yes
Idempotent Yes Yes
Partition Strategy 1:1, 1:M 1:1, 1:M
Frequently used Connectors
Kafka Output
16
KafkaSinglePortOutputOperator KafkaSinglePortExactlyOnceOutputOperator
Library malhar-contrib malhar-kafka
Kafka Producer 0.8 0.9
Fault-Tolerance At Least Once At Least Once, Exactly Once
Scalability Static and Dynamic (with Kafka
metadata)
Static and Dynamic, Automatic Partitioning
based on Kafka metadata
Multi-Cluster/Topic Yes Yes
Idempotent Yes Yes
Partition Strategy 1:1, 1:M 1:1, 1:M
Frequently used Connectors
File Input
17
• AbstractFileInputOperator
• Used to read a file from source and
emit the content of the file to
downstream operator
• Operator is idempotent
• Supports Partitioning
• Few Concrete Impl
• FileLineInputOperator
• AvroFileInputOperator
• ParquetFilePOJOReader
• https://www.datatorrent.com/blog/f
ault-tolerant-file-processing/
Frequently used Connectors
File Output
18
• AbstractFileOutputOperator
• Writes data to a file
• Supports Partitions
• Exactly-once results
• Upstream operators should be
idempotent
• Few Concrete Impl
• StringFileOutputOperator
• https://www.datatorrent.com/blog/f
ault-tolerant-file-processing/
Windowing Support
19
• Event-time Windows
• Computation based on event-time present in the tuple
• Types of event-time windows supported:
• Global : Single event-time window throughout the lifecycle of application
• Timed : Tuple is assigned to single, non-overlapping, fixed width windows immediately
followed by next window
• Sliding Time : Tuple is can be assigned to multiple, overlapping fixed width windows.
• Session : Tuple is assigned to single, variable width windows with a predefined min gap
Stateful Windowed Processing
20
• WindowedOperator from malhar-library
• Used to process data based on Event time as contrary to ingression time
• Supports windowing semantics of Apache Beam model
• Supported features:
• Watermarks
• Allowed Lateness
• Accumulation
• Accumulation Modes: Accumulating, Discarding, Accumulating & Retracting
• Triggers
• Storage
• In memory based
• Managed State based
Stateful Windowed Processing
Compositional API
21
@Override
public void populateDAG(DAG dag, Configuration configuration)
{
WordGenerator inputOperator = new WordGenerator();
KeyedWindowedOperatorImpl windowedOperator = new KeyedWindowedOperatorImpl();
Accumulation<Long, MutableLong, Long> sum = new SumAccumulation();
windowedOperator.setAccumulation(sum);
windowedOperator.setDataStorage(new InMemoryWindowedKeyedStorage<String, MutableLong>());
windowedOperator.setRetractionStorage(new InMemoryWindowedKeyedStorage<String, Long>());
windowedOperator.setWindowStateStorage(new InMemoryWindowedStorage<WindowState>());
windowedOperator.setWindowOption(new WindowOption.TimeWindows(Duration.standardMinutes(1)));
windowedOperator.setTriggerOption(TriggerOption.AtWatermark()
.withEarlyFiringsAtEvery(Duration.millis(1000))
.accumulatingAndRetractingFiredPanes());
windowedOperator.setAllowedLateness(Duration.millis(14000));
ConsoleOutputOperator outputOperator = new ConsoleOutputOperator();
dag.addOperator( "inputOperator", inputOperator);
dag.addOperator( "windowedOperator", windowedOperator);
dag.addOperator( "outputOperator", outputOperator);
dag.addStream( "input_windowed", inputOperator. output, windowedOperator.input);
dag.addStream( "windowed_output", windowedOperator.output, outputOperator. input);
}
Stateful Windowed Processing
Declarative API
22
StreamFactory.fromFolder("/tmp")
.flatMap(input -> Arrays.asList(input.split( " ")), name("ExtractWords"))
.map(input -> new TimestampedTuple<>(System.currentTimeMillis(), input), name("AddTimestampFn"))
.window(new TimeWindows(Duration.standardMinutes(WINDOW_SIZE)),
new TriggerOption().accumulatingFiredPanes().withEarlyFiringsAtEvery(1))
.countByKey(input -> new TimestampedTuple<>(input.getTimestamp(), new KeyValPair<>(input.getValue(),
1L ))), name("countWords"))
.map(new FormatAsTableRowFn(), name("FormatAsTableRowFn"))
.print(name("console"))
.populateDag(dag);
• Useful for low latency and high throughput
• Replicates (Partitions) the logic
• Configured at launch time (Application.java or
properties.xml)
• StreamCodec
• Used for controlling distribution of tuples to
downstream partitions
• Unifier (combine results of partitions)
• Passthrough unifier added by platform to merge
results from upstream partitions
• Can also be customized
• Type of partitions
• Static partitions - Statically partition at launch
time
• Dynamic partitions - Partitions changing at
runtime based on latency and/or throughput
• Parallel partitions - Upstream and downstream
operators using same partition scheme
Scalability - Partitioning
23
Scalability - Partitioning (contd.)
24
0 1 2 3
Logical DAG
0 1 2 U
Physical DAG
1
1 2
2
3
Parallel
Partitions
M x N
Partitions
OR
Shuffle
<configuration>
<property>
<name>dt.operator.1. attr.PARTITIONER</name>
<value>com.datatorrent.common.partitioner. StatelessPartitioner:3</value>
</property>
<property>
<name>dt.operator.2.port.inputPortName. attr.PARTITION_PARALLEL</name>
<value>true</value>
</property>
</configuration>
End-to-End Exactly-Once
25
Input Counter Store
Aggregate
CountsWords
Kafka Database
● Input
○ Uses com.datatorrent.contrib.kafka.KafkaSinglePortStringInputOperator
○ Emits words as a stream
○ Operator is idempotent
● Counter
○ com.datatorrent.lib.algo.UniqueCounter
● Store
○ Uses CountStoreOperator
○ Inserts into JDBC
○ Exactly-once results (End-To-End Exactly-once = At-least-once + Idempotency + Consistent State)
https://github.com/DataTorrent/examples/blob/master/tutorials/exactly-once
https://www.datatorrent.com/blog/end-to-end-exactly-once-with-apache-apex/
End-to-End Exactly-Once (Contd.)
26
Input Counter Store
Aggregate
CountsWords
Kafka Database
public static class CountStoreOperator extends AbstractJdbcTransactionableOutputOperator<KeyValPair<String, Integer>>
{
public static final String SQL =
"MERGE INTO words USING (VALUES ?, ?) I (word, wcount)"
+ " ON (words.word=I.word)"
+ " WHEN MATCHED THEN UPDATE SET words.wcount = words.wcount + I.wcount"
+ " WHEN NOT MATCHED THEN INSERT (word, wcount) VALUES (I.word, I.wcount)";
@Override
protected String getUpdateCommand()
{
return SQL;
}
@Override
protected void setStatementParameters(PreparedStatement statement, KeyValPair<String, Integer> tuple)throws SQLException
{
statement.setString(1, tuple.getKey());
statement.setInt(2, tuple.getValue());
}
}
End-to-End Exactly-Once (Contd.)
27
https://www.datatorrent.com/blog/fault-tolerant-file-processing/
Who is using Apex?
28
• Powered by Apex
ᵒ http://apex.apache.org/powered-by-apex.html
ᵒ Also using Apex? Let us know to be added: users@apex.apache.org or @ApacheApex
• Pubmatic
ᵒ https://www.youtube.com/watch?v=JSXpgfQFcU8
• GE
ᵒ https://www.youtube.com/watch?v=hmaSkXhHNu0
ᵒ http://www.slideshare.net/ApacheApex/ge-iot-predix-time-series-data-ingestion-service-usin
g-apache-apex-hadoop
• SilverSpring Networks
ᵒ https://www.youtube.com/watch?v=8VORISKeSjI
ᵒ http://www.slideshare.net/ApacheApex/iot-big-data-ingestion-and-processing-in-hadoop-by-s
ilver-spring-networks
Resources
29
• http://apex.apache.org/
• Learn more - http://apex.apache.org/docs.html
• Subscribe - http://apex.apache.org/community.html
• Download - http://apex.apache.org/downloads.html
• Follow @ApacheApex - https://twitter.com/apacheapex
• Meetups - https://www.meetup.com/topics/apache-apex/
• Examples - https://github.com/DataTorrent/examples
• Slideshare - http://www.slideshare.net/ApacheApex/presentations
• https://www.youtube.com/results?search_query=apache+apex
• Free Enterprise License for Startups -
https://www.datatorrent.com/product/startup-accelerator/
Q&A
30

Apache Big Data EU 2016: Building Streaming Applications with Apache Apex

  • 1.
    Building Streaming Applicationswith Apache Apex Chinmay Kolhatkar, Committer @ApacheApex, Engineer @DataTorrent Thomas Weise, PMC Chair @ApacheApex, Architect @DataTorrent Nov 15th 2016
  • 2.
    Agenda 2 • Application DevelopmentModel • Creating Apex Application - Project Structure • Apex APIs • Configuration Example • Operator APIs • Overview of Operator Library • Frequently used Connectors • Stateful Transformation & Windowing • Scalability - Partitioning • End-to-end Exactly Once
  • 3.
    Application Development Model 3 ▪Streamis a sequence of data tuples ▪Operator takes one or more input streams, performs computations & emits one or more output streams • Each Operator is YOUR custom business logic in java, or built-in operator from our open source library • Operator has many instances that run in parallel and each instance is single-threaded ▪Directed Acyclic Graph (DAG) is made up of operators and streams Directed Acyclic Graph (DAG) Filtered Stream Output Stream Tuple Tuple FilteredStream Enriched Stream Enriched Stream er Operator er Operator er Operator er Operator er Operator er Operator
  • 4.
    Creating Apex ApplicationProject 4 chinmay@chinmay-VirtualBox:~/src$ mvn archetype:generate -DarchetypeGroupId=org.apache.apex -DarchetypeArtifactId=apex-app-archetype -DarchetypeVersion=LATEST -DgroupId=com.example -Dpackage=com.example.myapexapp -DartifactId=myapexapp -Dversion=1.0-SNAPSHOT … … ... Confirm properties configuration: groupId: com.example artifactId: myapexapp version: 1.0-SNAPSHOT package: com.example.myapexapp archetypeVersion: LATEST Y: : Y … … ... [INFO] project created from Archetype in dir: /media/sf_workspace/src/myapexapp [INFO] ------------------------------------------------------------------------ [INFO] BUILD SUCCESS [INFO] ------------------------------------------------------------------------ [INFO] Total time: 13.141 s [INFO] Finished at: 2016-11-15T14:06:56+05:30 [INFO] Final Memory: 18M/216M [INFO] ------------------------------------------------------------------------ chinmay@chinmay-VirtualBox:~/src$ https://www.youtube.com/watch?v=z-eeh-tjQrc
  • 5.
    Apex Application ProjectStructure 5 • pom.xml • Defines project structure and dependencies • Application.java • Defines the DAG • RandomNumberGenerator.java • Sample Operator • properties.xml • Contains operator and application properties and attributes • ApplicationTest.java • Sample test to test application in local mode
  • 6.
    Apex APIs: Compositional(Low level) 6 Input Parser Counter Output CountsWordsLines Kafka Database Filter Filtered
  • 7.
    Apex APIs: Declarative(High Level) 7 File Input Parser Word Counter Console Output CountsWordsLines Folder StdOut StreamFactory.fromFolder("/tmp") .flatMap(input -> Arrays.asList(input.split(" ")), name("Words")) .window(new WindowOption.GlobalWindow(), new TriggerOption().accumulatingFiredPanes().withEarlyFiringsAtEvery(1)) .countByKey(input -> new Tuple.PlainTuple<>(new KeyValPair<>(input, 1L)), name("countByKey")) .map(input -> input.getValue(), name("Counts")) .print(name("Console")) .populateDag(dag);
  • 8.
    Apex APIs: SQL 8 Kafka Input CSV Parser FilterCSV Formattter FilteredWordsLines Kafka File Project Projected Line Writer Formatted SQLExecEnvironment.getEnvironment() .registerTable("ORDERS", new KafkaEndpoint(conf.get("broker"), conf.get("topic"), new CSVMessageFormat(conf.get("schemaInDef")))) .registerTable("SALES", new FileEndpoint(conf.get("destFolder"), conf.get("destFileName"), new CSVMessageFormat(conf.get("schemaOutDef")))) .registerFunction("APEXCONCAT", this.getClass(), "apex_concat_str") .executeSQL(dag, "INSERT INTO SALES " + "SELECT STREAM ROWTIME, FLOOR(ROWTIME TO DAY), APEXCONCAT('OILPAINT', SUBSTRING(PRODUCT, 6, 7) " + "FROM ORDERS WHERE ID > 3 AND PRODUCT LIKE 'paint%'");
  • 9.
    Apex APIs: Beam 9 •Apex Runner of Beam is available!! • Build once run-anywhere model • Beam Streaming applications can be run on apex runner: public static void main(String[] args) { Options options = PipelineOptionsFactory.fromArgs(args).withValidation().as(Options.class); // Run with Apex runner options.setRunner(ApexRunner.class); Pipeline p = Pipeline.create(options); p.apply("ReadLines", TextIO.Read.from(options.getInput())) .apply(new CountWords()) .apply(MapElements.via(new FormatAsTextFn())) .apply("WriteCounts", TextIO.Write.to(options.getOutput())); .run().waitUntilFinish(); }
  • 10.
    Apex APIs: SAMOA 10 •Build once run-anywhere model for online machine learning algorithms • Any machine learning algorithm present in SAMOA can be run directly on Apex. • Uses Apex Iteration Support • Following example does classification of input data from HDFS using VHT algorithm on Apex: $ bin/samoa apex ../SAMOA-Apex-0.4.0-incubating-SNAPSHOT.jar "PrequentialEvaluation -d /tmp/dump.csv -l (classifiers.trees.VerticalHoeffdingTree -p 1) -s (org.apache.samoa.streams.ArffFileStream -s HDFSFileStreamSource -f /tmp/user/input/covtypeNorm.arff)"
  • 11.
    Configuration (properties.xml) 11 Input ParserCounter Output CountsWordsLines Kafka Database Filter Filtered
  • 12.
    Streaming Window Processing TimeWindow 12 • Finite time sliced windows based on processing (event arrival) time • Used for bookkeeping of streaming application • Derived Windows are: Checkpoint Windows, Committed Windows
  • 13.
    Operator APIs 13 Next streaming window Next streaming window Input Adapters- Starting of the pipeline. Interacts with external system to generate stream Generic Operators - Processing part of pipeline Output Adapters - Last operator in pipeline. Interacts with external system to finalize the processed stream OutputPort::emit()
  • 14.
    Overview of OperatorLibrary (Malhar) 14 RDBMS • JDBC • MySQL • Oracle • MemSQL NoSQL • Cassandra, HBase • Aerospike, Accumulo • Couchbase/ CouchDB • Redis, MongoDB • Geode Messaging • Kafka • JMS (ActiveMQ etc.) • Kinesis, SQS • Flume, NiFi File Systems • HDFS/ Hive • Local File • S3 Parsers • XML • JSON • CSV • Avro • Parquet Transformations • Filters, Expression, Enrich • Windowing, Aggregation • Join • Dedup Analytics • Dimensional Aggregations (with state management for historical data + query) Protocols • HTTP • FTP • WebSocket • MQTT • SMTP Other • Elastic Search • Script (JavaScript, Python, R) • Solr • Twitter
  • 15.
    Frequently used Connectors KafkaInput 15 KafkaSinglePortInputOperator KafkaSinglePortByteArrayInputOperator Library malhar-contrib malhar-kafka Kafka Consumer 0.8 0.9 Emit Type byte[] byte[] Fault-Tolerance At Least Once, Exactly Once At Least Once, Exactly Once Scalability Static and Dynamic (with Kafka metadata) Static and Dynamic (with Kafka metadata) Multi-Cluster/Topic Yes Yes Idempotent Yes Yes Partition Strategy 1:1, 1:M 1:1, 1:M
  • 16.
    Frequently used Connectors KafkaOutput 16 KafkaSinglePortOutputOperator KafkaSinglePortExactlyOnceOutputOperator Library malhar-contrib malhar-kafka Kafka Producer 0.8 0.9 Fault-Tolerance At Least Once At Least Once, Exactly Once Scalability Static and Dynamic (with Kafka metadata) Static and Dynamic, Automatic Partitioning based on Kafka metadata Multi-Cluster/Topic Yes Yes Idempotent Yes Yes Partition Strategy 1:1, 1:M 1:1, 1:M
  • 17.
    Frequently used Connectors FileInput 17 • AbstractFileInputOperator • Used to read a file from source and emit the content of the file to downstream operator • Operator is idempotent • Supports Partitioning • Few Concrete Impl • FileLineInputOperator • AvroFileInputOperator • ParquetFilePOJOReader • https://www.datatorrent.com/blog/f ault-tolerant-file-processing/
  • 18.
    Frequently used Connectors FileOutput 18 • AbstractFileOutputOperator • Writes data to a file • Supports Partitions • Exactly-once results • Upstream operators should be idempotent • Few Concrete Impl • StringFileOutputOperator • https://www.datatorrent.com/blog/f ault-tolerant-file-processing/
  • 19.
    Windowing Support 19 • Event-timeWindows • Computation based on event-time present in the tuple • Types of event-time windows supported: • Global : Single event-time window throughout the lifecycle of application • Timed : Tuple is assigned to single, non-overlapping, fixed width windows immediately followed by next window • Sliding Time : Tuple is can be assigned to multiple, overlapping fixed width windows. • Session : Tuple is assigned to single, variable width windows with a predefined min gap
  • 20.
    Stateful Windowed Processing 20 •WindowedOperator from malhar-library • Used to process data based on Event time as contrary to ingression time • Supports windowing semantics of Apache Beam model • Supported features: • Watermarks • Allowed Lateness • Accumulation • Accumulation Modes: Accumulating, Discarding, Accumulating & Retracting • Triggers • Storage • In memory based • Managed State based
  • 21.
    Stateful Windowed Processing CompositionalAPI 21 @Override public void populateDAG(DAG dag, Configuration configuration) { WordGenerator inputOperator = new WordGenerator(); KeyedWindowedOperatorImpl windowedOperator = new KeyedWindowedOperatorImpl(); Accumulation<Long, MutableLong, Long> sum = new SumAccumulation(); windowedOperator.setAccumulation(sum); windowedOperator.setDataStorage(new InMemoryWindowedKeyedStorage<String, MutableLong>()); windowedOperator.setRetractionStorage(new InMemoryWindowedKeyedStorage<String, Long>()); windowedOperator.setWindowStateStorage(new InMemoryWindowedStorage<WindowState>()); windowedOperator.setWindowOption(new WindowOption.TimeWindows(Duration.standardMinutes(1))); windowedOperator.setTriggerOption(TriggerOption.AtWatermark() .withEarlyFiringsAtEvery(Duration.millis(1000)) .accumulatingAndRetractingFiredPanes()); windowedOperator.setAllowedLateness(Duration.millis(14000)); ConsoleOutputOperator outputOperator = new ConsoleOutputOperator(); dag.addOperator( "inputOperator", inputOperator); dag.addOperator( "windowedOperator", windowedOperator); dag.addOperator( "outputOperator", outputOperator); dag.addStream( "input_windowed", inputOperator. output, windowedOperator.input); dag.addStream( "windowed_output", windowedOperator.output, outputOperator. input); }
  • 22.
    Stateful Windowed Processing DeclarativeAPI 22 StreamFactory.fromFolder("/tmp") .flatMap(input -> Arrays.asList(input.split( " ")), name("ExtractWords")) .map(input -> new TimestampedTuple<>(System.currentTimeMillis(), input), name("AddTimestampFn")) .window(new TimeWindows(Duration.standardMinutes(WINDOW_SIZE)), new TriggerOption().accumulatingFiredPanes().withEarlyFiringsAtEvery(1)) .countByKey(input -> new TimestampedTuple<>(input.getTimestamp(), new KeyValPair<>(input.getValue(), 1L ))), name("countWords")) .map(new FormatAsTableRowFn(), name("FormatAsTableRowFn")) .print(name("console")) .populateDag(dag);
  • 23.
    • Useful forlow latency and high throughput • Replicates (Partitions) the logic • Configured at launch time (Application.java or properties.xml) • StreamCodec • Used for controlling distribution of tuples to downstream partitions • Unifier (combine results of partitions) • Passthrough unifier added by platform to merge results from upstream partitions • Can also be customized • Type of partitions • Static partitions - Statically partition at launch time • Dynamic partitions - Partitions changing at runtime based on latency and/or throughput • Parallel partitions - Upstream and downstream operators using same partition scheme Scalability - Partitioning 23
  • 24.
    Scalability - Partitioning(contd.) 24 0 1 2 3 Logical DAG 0 1 2 U Physical DAG 1 1 2 2 3 Parallel Partitions M x N Partitions OR Shuffle <configuration> <property> <name>dt.operator.1. attr.PARTITIONER</name> <value>com.datatorrent.common.partitioner. StatelessPartitioner:3</value> </property> <property> <name>dt.operator.2.port.inputPortName. attr.PARTITION_PARALLEL</name> <value>true</value> </property> </configuration>
  • 25.
    End-to-End Exactly-Once 25 Input CounterStore Aggregate CountsWords Kafka Database ● Input ○ Uses com.datatorrent.contrib.kafka.KafkaSinglePortStringInputOperator ○ Emits words as a stream ○ Operator is idempotent ● Counter ○ com.datatorrent.lib.algo.UniqueCounter ● Store ○ Uses CountStoreOperator ○ Inserts into JDBC ○ Exactly-once results (End-To-End Exactly-once = At-least-once + Idempotency + Consistent State) https://github.com/DataTorrent/examples/blob/master/tutorials/exactly-once https://www.datatorrent.com/blog/end-to-end-exactly-once-with-apache-apex/
  • 26.
    End-to-End Exactly-Once (Contd.) 26 InputCounter Store Aggregate CountsWords Kafka Database public static class CountStoreOperator extends AbstractJdbcTransactionableOutputOperator<KeyValPair<String, Integer>> { public static final String SQL = "MERGE INTO words USING (VALUES ?, ?) I (word, wcount)" + " ON (words.word=I.word)" + " WHEN MATCHED THEN UPDATE SET words.wcount = words.wcount + I.wcount" + " WHEN NOT MATCHED THEN INSERT (word, wcount) VALUES (I.word, I.wcount)"; @Override protected String getUpdateCommand() { return SQL; } @Override protected void setStatementParameters(PreparedStatement statement, KeyValPair<String, Integer> tuple)throws SQLException { statement.setString(1, tuple.getKey()); statement.setInt(2, tuple.getValue()); } }
  • 27.
  • 28.
    Who is usingApex? 28 • Powered by Apex ᵒ http://apex.apache.org/powered-by-apex.html ᵒ Also using Apex? Let us know to be added: [email protected] or @ApacheApex • Pubmatic ᵒ https://www.youtube.com/watch?v=JSXpgfQFcU8 • GE ᵒ https://www.youtube.com/watch?v=hmaSkXhHNu0 ᵒ http://www.slideshare.net/ApacheApex/ge-iot-predix-time-series-data-ingestion-service-usin g-apache-apex-hadoop • SilverSpring Networks ᵒ https://www.youtube.com/watch?v=8VORISKeSjI ᵒ http://www.slideshare.net/ApacheApex/iot-big-data-ingestion-and-processing-in-hadoop-by-s ilver-spring-networks
  • 29.
    Resources 29 • http://apex.apache.org/ • Learnmore - http://apex.apache.org/docs.html • Subscribe - http://apex.apache.org/community.html • Download - http://apex.apache.org/downloads.html • Follow @ApacheApex - https://twitter.com/apacheapex • Meetups - https://www.meetup.com/topics/apache-apex/ • Examples - https://github.com/DataTorrent/examples • Slideshare - http://www.slideshare.net/ApacheApex/presentations • https://www.youtube.com/results?search_query=apache+apex • Free Enterprise License for Startups - https://www.datatorrent.com/product/startup-accelerator/
  • 30.