1
2010/10/23 Cryolite
Boost.勉強会 #3 関西
S t a
T
L
a
a
a
e m
n d dr
rri b
p l t e
y
自己紹介
• 名前: Cryolite
• 特技: C++ とかできます
2
STLとは「コンテナ×
イテレータ×アルゴリズム」
3
コンテナ アルゴリズム
find
sort
remove
・・・・・
vector
deque
list
・・・・・
STLとは「コンテナ×
イテレータ×アルゴリズム」
4
コンテナ アルゴリズム
find
sort
remove
・・・・・
vector
deque
list
・・・・・
STLとは「コンテナ×
イテレータ×アルゴリズム」
5
コンテナ アルゴリズム
find
sort
remove
・・・・・
vector
deque
list
・・・・・
(組み合わせの数)
=(データ構造の数)×(アルゴリズムの数)
かける
STLとは「コンテナ×
イテレータ×アルゴリズム」
コンテナ アルゴリズム
find
sort
remove
・・・・・
vector
deque
list
・・・・・
イテレータ
6
STLとは「コンテナ×
イテレータ×アルゴリズム」
コンテナ アルゴリズム
find
sort
remove
・・・・・
vector
deque
list
・・・・・
イテレータ
(組み合わせの数)
=(データ構造の数)+(アルゴリズムの数)
たす
7
STLとは「コンテナ×
イテレータ×アルゴリズム」
コンテナ アルゴリズム
findvector
deque イテレータ
8
STLとは「コンテナ×
イテレータ×アルゴリズム」
コンテナ アルゴリズム
findvector
deque イテレータ
コンテナ側に
変化があっても……
9
STLとは「コンテナ×
イテレータ×アルゴリズム」
コンテナ アルゴリズム
findvector
deque イテレータ
コンテナ側に
変化があっても……
アルゴリズム側に
影響しない
10
STLとは「コンテナ×
イテレータ×アルゴリズム」
コンテナ アルゴリズム
findvector
deque イテレータ
コンテナ側に
変化があっても……
アルゴリズム側に
影響しない
コンテナ側の変化に
対するファイアウォール 11
イテレータに注目!
コンテナ アルゴリズム
find
sort
remove
・・・・・
vector
deque
list
・・・・・
イテレータ
ちうもく!!
12
コンテナのイテレータには
3つの機能がある!
13
コンテナのイテレータは
• コンテナ中の場所(コンテナ中の1要素)を
指し示す
14
// 同じ場所なら true だよ!
iter == jter;
コンテナのイテレータは
• コンテナ中の場所(コンテナ中の1要素)を
指し示す
• コンテナ中の
全要素を列挙する
15
// 同じ場所なら true だよ!
iter == jter;
// 次の場所に移動するよ!
// 繰り返せば列挙になるよ!
++iter;
コンテナのイテレータは
• コンテナ中の場所(コンテナ中の1要素)を
指し示す
• コンテナ中の
全要素を列挙する
• 指し示している場所の値を取り出せる
16
// 同じ場所なら true だよ!
iter == jter;
// 次の場所に移動するよ!
// 繰り返せば列挙になるよ!
++iter;
// あたいったら取り出すね!
*iter;
イテレータの3つの機能
(※イメージです)
17
2 3 5 7 11 13 17 ・・・
コンテナ
イテレータの3つの機能
(※イメージです)
18
2 3 5 7 11 13 17 ・・・
場所を指示
コンテナ
イテレータの3つの機能
(※イメージです)
19
2 3 5 7 11 13 17 ・・・
列挙する場所を指示
コンテナ
イテレータの3つの機能
(※イメージです)
20
2 3 5 7 11 13 17 ・・・
5
値を取り出す
列挙する場所を指示
コンテナ
STL 最大の欠点
– Cryolite の眼: C++pro
21
Inspired by http://itpro.nikkeibp.co.jp/article/Watcher/20101015/352993/
STL 最大の欠点
– Cryolite の眼: C++pro
配列†のインデックスを
再評価してもいいのでは?
22
Inspired by http://itpro.nikkeibp.co.jp/article/Watcher/20101015/352993/
STL 最大の欠点
– Cryolite の眼: C++pro
23
配列†のインデックスを
再評価してもいいのでは?
筆者がここで言いたいのは,
そろそろ配列†のインデック
スを使ってみてもいいので
は?ということだ.
†一般にはランダムアクセスコンテナ
Inspired by http://itpro.nikkeibp.co.jp/article/Watcher/20101015/352993/
24
温故知新
– 故きを温ね新しきを知る
25
古代暗黒魔法が封印された禁書を開
いてみると,そこには古代語で書か
れたプログラムとおぼしきものが!
温故知新
– 故きを温ね新しきを知る
26
古代暗黒魔法が封印された禁書を開
いてみると,そこには古代語で書か
れたプログラムとおぼしきものが!
vector<int> v;
.....
for (size_t i = 0; i != v.size(); ++i) {
cout << v[i] << endl;
}
温故知新
– 故きを温ね新しきを知る
27
古代暗黒魔法が封印された禁書を開
いてみると,そこには古代語で書か
れたプログラムとおぼしきものが!
vector<int> v;
.....
for (size_t i = 0; i != v.size(); ++i) {
cout << v[i] << endl;
}
温故知新
– 故きを温ね新しきを知る
ランダムアクセスコンテナならイ
テレータを使わなくてもインデック
スで要素を列挙できるもんっ!
• コンテナ中の場所を指し示す
• コンテナ中の
全要素を列挙する
• 指し示している場所の値を取り出せる
28
// 同じ場所なら true だよ!
iter == jter;
// 次の場所に移動するよ!
// 繰り返せば列挙になるよ!
++iter;
// あたいったら取り出すね!
*iter;
イテレータの機能を
思い出してみよう!
29
ランダムアクセスコンテナの
インデックスは……
• コンテナ中の場所を指し示す
30
// 同じ場所なら true だよ!
i == j;
ランダムアクセスコンテナの
インデックスは……
• コンテナ中の場所を指し示す
• コンテナ中の
全要素を列挙する
31
// 同じ場所なら true だよ!
i == j;
// 次の場所に移動するよ!
// 繰り返せば列挙になるよ!
++i;
ランダムアクセスコンテナの
インデックスは……
• コンテナ中の場所を指し示す
• コンテナ中の
全要素を列挙する
• 指し示している場所の値を取り出せ……る?
32
// 同じ場所なら true だよ!
i == j;
// 次の場所に移動するよ!
// 繰り返せば列挙になるよ!
++i;
// コ,コンテナオブジェクトさえあれば!
v[i];
ランダムアクセスコンテナの
インデックスは……
値の取り出し方を
抽象化しましょう ← 結論
33
値の取り出し方を
抽象化しましょう ← 結論
34
イテレータもインデックスも
コンテナ中の場所を指し示せる
値の取り出し方を
抽象化しましょう ← 結論
35
v[i];
イテレータもインデックスも
コンテナ中の場所を指し示せる
*iter;
値を取り出す構文が違う
値の取り出し方を
抽象化しましょう ← 結論
36
v[i];
イテレータもインデックスも
コンテナ中の場所を指し示せる
*iter;
値の取り出し方を抽象化しましょう
値を取り出す構文が違う
get(pm, desc);
値の取り出し方を
抽象化しましょう ← 結論
37
v[i];
イテレータもインデックスも
コンテナ中の場所を指し示せる
*iter;
値の取り出し方を抽象化しましょう
値を取り出す構文が違う
get(pm, desc);
イテレータだったりインデックスだったり
【再掲】
イテレータの機能(イメージ)
38
2 3 5 7 11 13 17 ・・・
5
値を取り出す
列挙する場所を指示
コンテナ
値の取り出し方を
抽象化したイメージへ……
・・・
モノの集まり
39
・・・
1つのモノを指示
モノの集まり
40
値の取り出し方を
抽象化したイメージへ……
・・・
列挙する1つのモノを指示
モノの集まり
41
値の取り出し方を
抽象化したイメージへ……
・・・
5
列挙する1つのモノを指示
モノの集まり
32 7
モノと値を関連付ける
11 13 19 42
値の取り出し方を
抽象化したイメージへ……
疑問
・・・
5
列挙する1つのモノを指示
モノの集まり
32 7
モノと値を関連付ける
11 13 19
こんな風に考えて
何がうれしいの?
43
疑問への回答その1
・・・
5
列挙する1つのモノを指示
モノの集まり
32 7
モノと値を関連付ける
11 13 19
こんな風に考えて
何がうれしいの?
44
モノの指し示し方を
柔軟にできるよ!
イテレータ,インデックス, etc…
・・・
5
列挙する1つのモノを指示
モノの集まり
32 7
モノと値を関連付ける
11 13 19
こんな風に考えて
何がうれしいの?
45
モノに対して柔軟に
値を関連付けられるよ!
疑問への回答その2
・・・
1
モノの集まり
11 1
定数を関連付ける
1 1 1 46
疑問への回答その2 (例1)
・・・
モノの集まり
3×22×2 7×2 11×2 13×2 19×2 47
5×2
値を加工して関連付ける
疑問への回答その2 (例2)
・・・
5
列挙する1つのモノを指示
モノの集まり
32 7
モノと値を関連付ける
11 13 19
こんな風に考えて
何がうれしいの?
1つのモノに対して複数の
値を関連付けられるよ!
48
疑問への回答その3
・・・
49
疑問への回答その3 (例)
・・・
532 7 11 13 19
モノと値を関連付けその1
50
疑問への回答その3 (例)
・・・
532 7 11 13 19
‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘,’ ‘_’
モノと値を関連付けその1
モノと値を関連付けその2
51
疑問への回答その3 (例)
それぞれの機能を担う
オブジェクトに名前を付けよう!
・・・
5
列挙する1つのモノを指示
モノの集まり
32 7
モノと値を関連付ける
11 13 19 52
・・・
5
列挙する
モノの集まり
32 7
モノと値を関連付ける
11 13 19 53
デスクリプタ
それぞれの機能を担う
オブジェクトに名前を付けよう!
・・・
5
モノの集まり
32 7
モノと値を関連付ける
11 13 19 54
デスクリプタ (デスクリプタを列挙する)
イテレータ
それぞれの機能を担う
オブジェクトに名前を付けよう!
・・・
5
モノの集まり
32 7
プロパティマップ
11 13 19 55
デスクリプタ (デスクリプタを列挙する)
イテレータ
それぞれの機能を担う
オブジェクトに名前を付けよう!
56
Boost.PropertyMap
2010/10/23 Cryolite
Boost.勉強会 #3 関西
プロパティマップとは
57
デスクリプタを受け取って,値を返す
インタフェイスを定義
デスクリプタと書き込む値を受け取って,
書き込むインタフェイスを定義
get(pm, desc); // 値が返る
put(pm, desc, val);
プロパティマップとは
• イテレータにおける「値を取り出す」「値を
書き込む」機能に対応
• うれしいこと3つ
– モノの指し示し方が超柔軟に
– モノに関連付けられた値の取り出し方・書き込
み方が超柔軟に
– 1つのモノに対して複数の値・書き込み先を関
連付ける
58
プロパティマップとは
59
このライブラリだけ
説明しても意味不明!
STL のコンテナとアルゴリズムの
関係を話さずにイテレータを説明
してもおそらく意味不明!
≒
イテレータ in STL
60
コンテナ アルゴリズム
find
sort
remove
・・・・・
vector
deque
list
・・・・・
イテレータ
プロパティマップ
in 汎用グラフライブラリ
61
グラフ
データ構造
汎用グラフ
アルゴリズム
Dijkstra
DFS
A*
・・・・・
隣接リスト
隣接行列
edge list
・・・・・
イテレータ
デスクリプタ
プロパティ
マップ
ビジター
プロパティマップ
in 汎用グラフライブラリ
62
グラフ
データ構造
汎用グラフ
アルゴリズム
Dijkstra
DFS
A*
・・・・・
隣接リスト
隣接行列
edge list
・・・・・
イテレータ
デスクリプタ
プロパティ
マップ
ビジター
Boost.PropertyMap の本領
– グラフにおける汎用アルゴリズム
63
a
b
c
d
e
f
グラフのデータ構造とプロパティマップ
- グラフのデータ構造は多種多様
64
a
b
c
d
e
f
a b d g
b c d
a c f
a c g
b f
c d e
隣接リスト (例1)
グラフのデータ構造とプロパティマップ
- グラフのデータ構造は多種多様
65
a
b
c
d
e
f
a b d g
b c d
a c f
a c g
b f
c d e
隣接リスト (例2)
グラフのデータ構造とプロパティマップ
- グラフのデータ構造は多種多様
66
隣接行列
0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 1 0 1
1 0 1 0 0 1
0 1 0 0 0 1
0 0 1 1 1 0
a b c d e f
a
b
c
d
e
f
グラフアルゴリズムは頂点や
辺に関連付けられた値を駆使
67
グラフアルゴリズムは
• 頂点の重み,インデックス,親,色
• スタートから各頂点までの距離
• 辺の重み,インデックス
• 辺のインデックス
などを使わないと実行できない
色々なグラフデータ構造に対して
これらをどう関連付けるのか?
デスクリプタ・イテレータ・プロパティマッ
プによる汎用なグラフアルゴリズム
68
⇒(デスクリプタを返す) イテレータを使います
頂点や辺を一意に特定する必要があります
頂点や辺に様々な値を関連付ける必要があります
頂点や辺を様々な形で列挙する必要があります
⇒頂点や辺を指すデスクリプタを使います
⇒プロパティマップを使います
具体的な例 – ランダムアク
セスコンテナ & イテレータ
69
vector<Edge>
struct Edge {
double getWeight() const;
void setWeight(double w);
};
double get(WeightPMap, Iterator iter) {
return iter->getWeight();
}
辺の重みの
読み出し
iter
具体的な例 – ランダムアク
セスコンテナ & イテレータ
70
vector<Edge>
struct Edge {
double getWeight() const;
void setWeight(double w);
};
void put(WeightPMap, Iterator iter, double val) {
iter->setWeight(val);
}
辺の重みの
書き込み
iter
具体的な例 – ランダムアク
セスコンテナ & イテレータ
71
vector<Edge>
struct IteratorIndexPMap {
Iterator first_; // = v.begin()
};
size_t get(IteratorOffsetPMap pm, Iterator iter) {
return iter - pm.first_;
} 辺のインデックスの
読み出し (read-only)
iter
具体的な例 – ランダムアク
セスコンテナ & インデックス
72
vector<Edge>
struct Edge {
double getWeight() const;
void setWeight(double w);
};
struct WeightPMap { vector<Edge> &v_; };
double get(WeightPMap pm, Index idx) {
return pm.v_[idx].getWeight();
}
辺の重みの
読み出し
idx
具体的な例 – ランダムアク
セスコンテナ & インデックス
73
vector<Edge>
struct Edge {
double getWeight() const;
void setWeight(double w);
};
struct WeightPMap { vector<Edge> &v_; };
void put(WeightPMap pm, Index idx, double val) {
pm.v_[idx].setWeight(val);
}
辺の重みの
書き込み
idx
具体的な例 – ランダムアク
セスコンテナ & インデックス
74
vector<Edge>
struct IdentityPMap {};
size_t get(IdentityPMap, Index idx) {
return idx;
} 辺のインデックスの
読み出し (read-only)
idx
様々なプロパティマップの例
75
vector<Edge>
0 1 2 3 4 インデックス
76
vector<Edge>
0 1 2 3 4 インデックス
another_vec[idx]
2 3 5 7 11
様々なプロパティマップの例
vector<Edge>
77
0 1 2 3 4 インデックス
another_vec[idx]
2 3 5 7 11
様々なプロパティマップの例インデックスを踏み台にして,
他のランダムアクセスコンテナで
別の値をさらに関連付ける
Edge クラスが元々持っていない
種類の値を非侵入的に関連付け
78
list<Edge>
double get(WeightPMap, Iterator iter) {
return iter->getWeight();
}
void put(WeightPMap, Iterator iter, double val) {
iter->setWeight(val);
}
iter
様々なプロパティマップの例
79
list<Edge>
unordered_map<Iterator, double>
2 3 5 7 11
iter
様々なプロパティマップの例
80
list<Edge>
unordered_map<Iterator, size_t>
0 1 2 3 4
iter
インデックス
様々なプロパティマップの例
81
list<Edge>
unordered_map<Iterator, size_t>
0 1 2 3 4
iter
インデックス
2 3 5 7 11
another_vec[idx]
様々なプロパティマップの例
様々なプロパティマップの例
list<Edge>
82
unordered_map<Iterator, size_t>
0 1 2 3 4
iter
インデックス
2 3 5 7 11
another_vec[idx]
実メモリ上に記録した
インデックスを踏み台にして,
他のランダムアクセスコンテナで
別の値をさらに関連付ける
Edge クラスが元々持っていない
種類の値を非侵入的に関連付け
プロパティマップ
in 汎用グラフライブラリ
83
グラフデータ構造
汎用グラフアルゴリズム
プロパティマップ
get(pm, desc), put(pm, desc, val)
プロパティマップ
in 汎用グラフライブラリ
84
グラフデータ構造
汎用グラフアルゴリズム
プロパティマップ
get(pm, desc), put(pm, desc, val)
アルゴリズムは
プロパティマップのみに依存
どんなデータ構造に対しても
汎用で再利用可能
85
ダイクストラ法で必要なプロパティ
種類 Read / Write
頂点 距離 Read & Write
先行頂点 Read & Write
インデックス Read
辺 重み Read
グラフアルゴリズムに
対する要求も多種多様
86
ダイクストラ法で必要なプロパティ
種類 Read / Write
頂点 距離 Read & Write
先行頂点 Read & Write
インデックス Read
辺 重み Read
ゴールまでの最小の辺の
数が知りたいだけなんだけど
グラフアルゴリズムに
対する要求も多種多様
辺の重みプロパティマップが
定数1を返せばよい
87
ダイクストラ法で必要なプロパティ
種類 Read / Write
頂点 距離 Read & Write
先行頂点 Read & Write
インデックス Read
辺 重み Read
ゴールまでの最短距離だけが知りたい
実際の経路は別に分からなくてもよいのだが
グラフアルゴリズムに
対する要求も多種多様
先行頂点の書き込みプロパティマップに
何もしないダミーを設定すればよい
プロパティマップ – まとめ
• イテレータにおける「値を取り出す」「値を
書き込む」機能の抽象インタフェイス定義
• うれしいこと3つ
– モノの指し示し方が超柔軟に
– モノに関連付けられた値の取り出し方・書き込
み方が超柔軟に
– 1つのモノに対して複数の値・書き込み先を関
連付ける
• 汎用グラフライブラリで威力を発揮 88

More Related Content

PDF
部内勉強会 数え上げの基礎
PDF
自然言語処理のための機械学習入門1章
PDF
代数的実数とCADの実装紹介
PDF
Eigentrust (in Japanese)
PDF
プログラマのための文書推薦入門
PDF
Monadicプログラミング マニアックス
PDF
動的計画法の並列化
PDF
ARC#003D
部内勉強会 数え上げの基礎
自然言語処理のための機械学習入門1章
代数的実数とCADの実装紹介
Eigentrust (in Japanese)
プログラマのための文書推薦入門
Monadicプログラミング マニアックス
動的計画法の並列化
ARC#003D

What's hot (15)

PDF
各言語の k-means 比較
PDF
プログラミングコンテストでの乱択アルゴリズム
PDF
色々なダイクストラ高速化
PDF
C++0x 言語の未来を語る
PDF
プログラミングコンテストでのデータ構造 2 ~動的木編~
PDF
協調フィルタリングを利用した推薦システム構築
PDF
スタートHaskell2 型を信じろ
PPTX
函数プログラミングの エッセンスと考え方
PDF
コンピュータービジョン最先端ガイド2 3.4ベクトルデータに対するカーネル法(SVM)
PDF
Clustering _ishii_2014__ch10
PDF
Deep learning _linear_algebra___probablity___information
PDF
プログラミングコンテストでの動的計画法
PDF
Cvpr2011 reading-tsubosaka
PDF
動的計画法入門(An introduction to Dynamic Programming)
PDF
"Puzzle-Based Automatic Testing: Bringing Humans into the Loop by Solving Puz...
各言語の k-means 比較
プログラミングコンテストでの乱択アルゴリズム
色々なダイクストラ高速化
C++0x 言語の未来を語る
プログラミングコンテストでのデータ構造 2 ~動的木編~
協調フィルタリングを利用した推薦システム構築
スタートHaskell2 型を信じろ
函数プログラミングの エッセンスと考え方
コンピュータービジョン最先端ガイド2 3.4ベクトルデータに対するカーネル法(SVM)
Clustering _ishii_2014__ch10
Deep learning _linear_algebra___probablity___information
プログラミングコンテストでの動的計画法
Cvpr2011 reading-tsubosaka
動的計画法入門(An introduction to Dynamic Programming)
"Puzzle-Based Automatic Testing: Bringing Humans into the Loop by Solving Puz...
Ad

Viewers also liked (20)

PDF
10分で分かるリアクティブシステム
PDF
Deeplinkから考えるWebとAppの今後とは
PDF
How To Become A Rubyist
PDF
Jenkins 2.0 最新事情 〜Make Jenkins Great Again〜
PPTX
flow による型のある世界入門
PDF
地獄のご紹介 #dentoolt
PDF
Iterators must-go(ja)
PDF
ABC2015 Summer LT
PDF
CG基礎3 メタリンク
PDF
Boost study meeting opening 4
PDF
boost::shared_ptr tutorial
PPTX
boost - std - C#
PDF
The Earth is not flat; but it's not round either (Geography on Boost.Geometry)
DOCX
Boost勉強会 #10 ディスカッションまとめ
PDF
Glfw3,OpenGL,GUI
PDF
boost and c++11
PDF
3DCAD@VDI活用とCADデータ管理のロードマップ
PPTX
ゲーム開発経営ゲーム
PDF
Boost container feature
PDF
Boost Tour 1_58_0 merge
10分で分かるリアクティブシステム
Deeplinkから考えるWebとAppの今後とは
How To Become A Rubyist
Jenkins 2.0 最新事情 〜Make Jenkins Great Again〜
flow による型のある世界入門
地獄のご紹介 #dentoolt
Iterators must-go(ja)
ABC2015 Summer LT
CG基礎3 メタリンク
Boost study meeting opening 4
boost::shared_ptr tutorial
boost - std - C#
The Earth is not flat; but it's not round either (Geography on Boost.Geometry)
Boost勉強会 #10 ディスカッションまとめ
Glfw3,OpenGL,GUI
boost and c++11
3DCAD@VDI活用とCADデータ管理のロードマップ
ゲーム開発経営ゲーム
Boost container feature
Boost Tour 1_58_0 merge
Ad

Similar to Boost.PropertyMap (.pdf) (20)

PPT
Algorithm 速いアルゴリズムを書くための基礎
PPTX
Tokyo r27
PDF
第1回R勉強会@東京
PPT
6 Info Theory
PDF
実用Brainf*ckプログラミング
PPTX
Euler 標数は測度ですか??
PDF
すごいHaskell読書会 第7章 (前編)
PDF
ウェーブレット木の世界
PDF
Material
PPTX
Coursera "Neural Networks"
PDF
SSII2022 [TS3] コンテンツ制作を支援する機械学習技術​〜 イラストレーションやデザインの基礎から最新鋭の技術まで 〜​
PDF
programming camp 2008, introduction of programming, algorithm
PPTX
今日からはじめる微分方程式
PDF
研究生のためのC++ no.3
PDF
[FE]配列へのデータ格納について.pdf
 
PDF
闇魔術を触ってみた
PDF
「現実世界に活かす数学」 (麻布高等学校、教養総合、数学講義 5 回目)
PPTX
データとは何か
PDF
PythonによるDeep Learningの実装
Algorithm 速いアルゴリズムを書くための基礎
Tokyo r27
第1回R勉強会@東京
6 Info Theory
実用Brainf*ckプログラミング
Euler 標数は測度ですか??
すごいHaskell読書会 第7章 (前編)
ウェーブレット木の世界
Material
Coursera "Neural Networks"
SSII2022 [TS3] コンテンツ制作を支援する機械学習技術​〜 イラストレーションやデザインの基礎から最新鋭の技術まで 〜​
programming camp 2008, introduction of programming, algorithm
今日からはじめる微分方程式
研究生のためのC++ no.3
[FE]配列へのデータ格納について.pdf
 
闇魔術を触ってみた
「現実世界に活かす数学」 (麻布高等学校、教養総合、数学講義 5 回目)
データとは何か
PythonによるDeep Learningの実装

More from Cryolite (10)

PDF
A Fast and Space-Efficient Algorithm for Calculating Deficient Numbers (a.k.a...
PPTX
A Fast and Space-Efficient Algorithm for Calculating Deficient Numbers (a.k.a...
PPTX
左と右の話
PPTX
Lambda in template_final
PDF
Allocators@C++11
PDF
家に帰るまでが遠足です
PDF
Destructive Call
PPTX
Boost.PropertyMap (.pptx)
PPT
shared_ptr & weak_ptr (ppt 第2版, DL 専用)
PPT
shared_ptr & weak_ptr (ppt 初版, DL 専用)
A Fast and Space-Efficient Algorithm for Calculating Deficient Numbers (a.k.a...
A Fast and Space-Efficient Algorithm for Calculating Deficient Numbers (a.k.a...
左と右の話
Lambda in template_final
Allocators@C++11
家に帰るまでが遠足です
Destructive Call
Boost.PropertyMap (.pptx)
shared_ptr & weak_ptr (ppt 第2版, DL 専用)
shared_ptr & weak_ptr (ppt 初版, DL 専用)

Recently uploaded (10)

PDF
R-SCoRe: Revisiting Scene Coordinate Regression for Robust Large-Scale Visual...
PDF
Geminiの出力崩壊 本レポートは、Googleの大規模言語モデル「Gemini 2.5」が、特定の画像と短文入力に対して、誤った地名を推定し、最終的に...
PDF
Yamaha DT200WR Real Enduro ENGINE CYLINDER TRANSMISSION
PDF
ココロ分解帳|感情をやさしく分解し自分と他者を理解するためのモバイルノートアプリ
PDF
20250826_Devinで切り拓く沖縄ITの未来_AI駆動開発勉強会 沖縄支部 第2回
PPTX
Vibe Codingを触って感じた現実について.pptx .
PPTX
生成AIとモデルベース開発:実はとても相性が良いことを説明します。まあそうだろうなと思われる方はご覧ください。
PDF
20250823_IoTLT_vol126_kitazaki_v1___.pdf
PPTX
Cosense - 整えずして完全勝利!Cosenseが他のwikiツールと違う理由
R-SCoRe: Revisiting Scene Coordinate Regression for Robust Large-Scale Visual...
Geminiの出力崩壊 本レポートは、Googleの大規模言語モデル「Gemini 2.5」が、特定の画像と短文入力に対して、誤った地名を推定し、最終的に...
Yamaha DT200WR Real Enduro ENGINE CYLINDER TRANSMISSION
ココロ分解帳|感情をやさしく分解し自分と他者を理解するためのモバイルノートアプリ
20250826_Devinで切り拓く沖縄ITの未来_AI駆動開発勉強会 沖縄支部 第2回
Vibe Codingを触って感じた現実について.pptx .
生成AIとモデルベース開発:実はとても相性が良いことを説明します。まあそうだろうなと思われる方はご覧ください。
20250823_IoTLT_vol126_kitazaki_v1___.pdf
Cosense - 整えずして完全勝利!Cosenseが他のwikiツールと違う理由

Boost.PropertyMap (.pdf)