Domain Adaptive Faster R-CNN for Object Detection in the Wild 論文紹介Tsukasa Takagi
Domain Adaptive Faster R-CNN for Object Detection in the Wild
第46回 コンピュータビジョン勉強会@関東 CVPR2018読み会(前編)にて発表したスライドです。
https://kantocv.connpass.com/event/88613/
Domain Adaptive Faster R-CNN for Object Detection in the Wild 論文紹介Tsukasa Takagi
Domain Adaptive Faster R-CNN for Object Detection in the Wild
第46回 コンピュータビジョン勉強会@関東 CVPR2018読み会(前編)にて発表したスライドです。
https://kantocv.connpass.com/event/88613/
21. 7/15_CVPR2020_技術報告会
1. Generalized ODIN: Detecting Out-of-distribution Image without Learning from Out-of-distribution Data
Yen-Chang Hsu, Yilin Shen, Hongxia Jin, Zsolt Kira. CVPR 2020. https://arxiv.org/abs/2002.11297
2. Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks
Shiyu Liang, Yixuan Li, R. Srikant. ICLR 2018. https://arxiv.org/abs/1706.02690
3. A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks, Kevin Gimpel. https://arxiv.org/abs/1610.02136
4. Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Nguyen, Jason Yosinski, Jeff Clune. https://arxiv.org/abs/1412.1897
20
参考文献